Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T07:35:11.565Z Has data issue: false hasContentIssue false

Effect of high pressure on the preparation of Pd–Si–Cu bulk nanocrystalline material

Published online by Cambridge University Press:  31 January 2011

B. Yao
Affiliation:
State Key Lab. of RSA, Institute of Metal Research, Academia Sinica, Shenyang, 110015, and Siping Normal College, Siping 136000, People's Republic of China
B. Z. Ding
Affiliation:
State Key Lab. of RSA, Institute of Metal Research, Academia Sinica, Shenyang, 110015, People's Republic of China
G. L. Sui
Affiliation:
Siping Normal College, Siping, 136000, People's Republic of China
A. M. Wang
Affiliation:
State Key Lab. of RSA, Institute of Metal Research, Academia Sinica, Shenyang, 110015, People's Republic of China
Z. Q. Hu
Affiliation:
State Key Lab. of RSA, Institute of Metal Research, Academia Sinica, Shenyang, 110015, People's Republic of China
Get access

Abstract

A Pd–Si–Cu bulk nanocrystalline material was prepared by quenching the melted Pd78Si16Cu6 alloy at a cooling rate of 200 K/s under 2–6 GPa. It was found that the nanocrystalline material consists of Pd(Cu) disordered solid solution and a metastable phase-II, Pd4Si. The grain size was found to decrease with increasing pressure. The influence of high pressure on the grain size of bulk nanocrystalline material is discussed, and a possible formation mechanism is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Metal. 27, 43 (1986).Google Scholar
2.Shen, T. D., Wang, K.Y., Quang, M. X., and Wang, J.T., J. Mater. Sci. 11, 1576 (1992).Google Scholar
3.Lu, K., Wang, J. T., and Wei, W.D., J. Appl. Phys. 69 (1), 552 (1991).Google Scholar
4.Qi, X. Y., Wu, W. J., and Cheng, L.F., Nanostructured Mater. 2 (1), 99 (1993).Google Scholar
5.Hahn, H., Logas, J., and Averback, R. S., J. Mater. Res. 5, 609614 (1990).CrossRefGoogle Scholar
6.Xu, Y., Huang, X., and Wang, W. K., Appl. Phys. Lett. 56, 1957 (1990).CrossRefGoogle Scholar
7.Larchev, V. T., Melnik, N. N., Popova, S. V., Skrotskaya, G. G., and Talenskij, O. N., Proc. Lebedev. Phys. Inst. 1, 7 (1985) (in Russian).Google Scholar
8.Yao, B., Zhang, Q., and Su, W. H., Chinese J. High Pressure Phys. 4 (1), 50 (1990) (in Chinese).Google Scholar
9.Li, D. J., Ding, B. J., Yao, B., and Hu, Z.Q., Nanostructured Materials (in press).Google Scholar
10.Feng, D., Metal Physics (Science Press, Beijing, China, 1987), Vol. 1, p. 109 (in Chinese).Google Scholar
11.Turnbull, D. and Cohen, M.H., in Modern Aspects of Vitreous State, edited by McKenzie, S. D. (Butterworth, London, 1960), Vol. 1, p. 38.Google Scholar
12.Davies, H. A., Phys. Chem. Glass 17 (5), 159 (1976).Google Scholar
13.Brazhkin, V. V., Larchev, V.I., Popova, S.V., and Skrotskaya, G.G., Phys. Scripta 39, 338 (1989).CrossRefGoogle Scholar
14.Mirwald, P. W., Proc. 7th AIRAPT Int. Conf. (Plenum Press, New York, London, 1979), Vol. 1, p. 361.Google Scholar