Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T20:32:37.889Z Has data issue: false hasContentIssue false

Effect of high pressure during the fabrication on the thermal and mechanical properties of amorphous Ni60Nb40 particle-reinforced Al-based metal matrix composites

Published online by Cambridge University Press:  03 March 2011

Peng Yu*
Affiliation:
Division of Materials, School of Engineering, The University of Queensland, Brisbane, Qld 4072, Australia
Shankar Venkataraman
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
Jayanta Das
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
LaiChang Zhang
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
Wenyong Zhang
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
Jürgen Eckert
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ni60Nb40 metallic glass particles, prepared by mechanical alloying, were used to fabricate Al–30 wt% Ni60Nb40 metal matrix composites (MMCs) at 823 K by sintering, hot pressing, and hot extrusion. The Ni60Nb40 reinforcements remained amorphous in all the MMCs fabricated by the different methods. Compression tests revealed that the Young’s modulus and yield strength of the MMCs produced by hot-pressing and hot-extrusion are higher than those for the sintered specimens. Differential scanning calorimeter (DSC) annealing of the as-produced MMCs at 913 K revealed there are severe interfacial reactions between the Al matrix and the Ni60Nb40 reinforcements. The DSC isotherms indicate that the Al matrix reacts faster with Ni60Nb40 in the hot-pressed and hot-extruded MMCs than it does in the sintered material.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xu, D.H., Duan, G., and Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).CrossRefGoogle ScholarPubMed
2Eckert, J.: Mechanical alloying of highly processable glassy alloys. Mater. Sci. Eng., A 226, 364 (1997).CrossRefGoogle Scholar
3Eckert, J., Seidel, M., Kübler, A., Klement, U., and Schultz, L.: Oxide dispersion strengthened mechanically alloyed amorphous Zr–Al–Cu–Ni composites. Scripta Mater. 38, 595 (1998).CrossRefGoogle Scholar
4Saida, J., Matsushita, M., Li, C., and Inoue, A.: Formation of icosahedral quasicrystalline phase in Zr70Ni10M20(M = Pd, Au, Pt) ternary metallic glasses. Appl. Phys. Lett. 76, 3558 (2000).CrossRefGoogle Scholar
5Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
6Das, J., Löser, W., Kühn, U., Eckert, J., Roy, S.K., and Schultz, L.: High-strength Zr–Nb–(Cu,Ni,Al) composites with enhanced plasticity. Appl. Phys. Lett. 82, 4690 (2003).CrossRefGoogle Scholar
7Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
8Lee, M.H., Kim, J.H., Park, J.S., Kim, J.C., Kim, W.T., and Kim, D.H.: Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process. Scripta Mater. 50, 1367 (2004).Google Scholar
9Lee, M.H., Kim, J.H., Park, J.S., Kim, W.T., and Kim, D.H.: Development of Ni–Nb–Ta metallic glass particle reinforced Al based matrix composites. Mater. Sci. Forum 475, 3427 (2005).Google Scholar
10Yu, P., Kim, K.B., Das, J., Baier, F., Xu, W., and Eckert, J.: Fabrication and mechanical properties of Ni–Nb metallic glass particle-reinforced Al-based metal matrix composite. Scripta Mater. 54, 1445 (2006).Google Scholar
11Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).CrossRefGoogle Scholar
12Tjong, S.C. and Ma, Z.Y.: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29, 49 (2000).CrossRefGoogle Scholar
13Wang, W.H., Wen, P., Zhao, D.Q., Pan, M.X., Okada, T., and Utsumi, W.: Nucleation and growth in bulk metallic glass under high pressure investigated using in situ x-ray diffraction. Appl. Phys. Lett. 83, 5202 (2003).CrossRefGoogle Scholar
14Wang, W.H., Wang, R.J., Dai, D.Y., Zhao, D.Q., Pan, M.X., and Yao, Y.S.: Pressure-induced amorphization of ZrTiCuNiBe bulk glass-forming alloy. Appl. Phys. Lett. 79, 1106 (2001).CrossRefGoogle Scholar
15Koch, C.C., Cavin, O.B., McKamey, C.G., and Scarbrough, J.O.: Preparation of “amorphous” Ni60Nb40 by mechanical alloying. Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
16Yu, P., Zhang, L.C., Zhang, W.Y., Das, J., Kim, K.B., and Eckert, J.: The interfacial reaction during fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs. Mater. Sci. Eng., A 444, 206 (2007).CrossRefGoogle Scholar
17Wang, W.H., He, D.Q., Zhao, D.Q., and Yao, Y.S.: Nanocrystallization of ZrTiCuNiBeC bulk metallic glass under high pressure. Appl. Phys. Lett. 75, 2770 (1999).Google Scholar
18Shen, Z.Y., Chen, G.Y., Zhang, Y., and Yin, X.J.: Pressure effect on superconducting transition-temperature relaxation behavior of the Zr70Cu30 amorphous alloy on annealing at elevated pressures. Phys. Rev. B 39, 2714 (1989).Google Scholar
19Yousuf, M. and Rajan, K.G.: Pressure induced structural relaxation in amorphous solids—Example of Fe40Ni40P14B6. J. Mater. Sci. Lett. 3, 149 (1984).CrossRefGoogle Scholar
20Wen, P., Wang, W.H., Zhao, Y.H., Zhao, D.Q., Pan, M.X., Li, F.Y., and Jin, C.Q.: Glass transition in Zr46.75Ti8.25Cu7.5Ni10Be27.5 metallic glass under high pressure. Phys. Rev. B 69, 092201 (2004).CrossRefGoogle Scholar
21Mao, M. and Altounian, Z.: Reversible enthalpy relaxation in Zr67(Ni1−xCux)33 metallic glasses. J. Non-Cryst. Solids 205, 633 (1996).CrossRefGoogle Scholar
22Brüning, R., Altounian, Z., and Ström-Olsen, J.O.: Reversible structural relaxation in Fe–Ni–B–Si metallic glasses. J. Appl. Phys. 62, 3633 (1987).Google Scholar