Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T20:03:15.420Z Has data issue: false hasContentIssue false

Effect of different nanoscale RE2BaCuO5 additions on the formation of compositional fluctuation in Sm–Ba–Cu–O superconducting bulk materials

Published online by Cambridge University Press:  03 March 2011

Shih-Yun Chen*
Affiliation:
Institute of Physics, Academia Sinica, Taipei 701, Taiwan, Republic of China
In-Gann Chen
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
Yang-Chung Liao
Affiliation:
Department of Physics and Materials Science Center, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Maw-Kuen Wu
Affiliation:
Institute of Physics, Academia Sinica, Taipei 701, Taiwan, Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This study presents the effect of different nanoscale RE211 additions—Y2BaCuO5 (nmY211), Sm2BaCuO5 (nmSm211), and Nd4Ba2Cu2O10 (nmNd422)—on the nano-scale compositional fluctuation and associated pinning mechanism of the melt-textured growth (MTG) Sm–Ba–Cu–O [SmBCO, of which the composition is Sm123 (Sm1Ba2Cu3Oy) + 25 wt% Sm211 (Sm2BaCuO5)] superconducting bulk materials. The superconductivity and microstructure results indicated that in samples with the addition of these nano-sized particles, nanoscale compositional fluctuations form during the peritectic transformation of melt-growth process, which cause Tc variation on a nanoscale and result in the formation of δTc pinning centers at high magnetic field. The compositional fluctuation regions (δTc pinning centers) are altered by the difference in peritectic temperature, the solubility in the liquid phase, and the ion radius. The direct current transport R-T properties elucidate the change of flux pinning behavior. In addition, the different influence on microstructure and superconductivity between the two methods: mixing rare-earth elements in nanoscale RE211 or in the homogeneous mixed precursor powders [e.g., (Nd, Eu, Gd)–Ba–Cu–O (NEG)] is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, D.F., Selvamanickam, V. and Salama, K.: Influences of Y2BaCuO5 particle size and content on the transport critical current density of YBa2Cu3Ox superconductor. Physica C 202, 83 (1992).Google Scholar
2.Pi, U.H., Khim, Z.G. and Kim, D.H.: Direct observation of vortices trapped at stacking fault dislocations in Bi2Sr2CaCu2O8 by a low-temperature magnetic force microscope. Phys. Rev. B 69, 094518 (2004).CrossRefGoogle Scholar
3.Ramesh, R., Jin, S., Nakahara, S. and Tiefel, T.H.: Phase decomposition and structural defects in a Y–Ba–Cu–O superconductor. Appl. Phys. Lett. 57, 1458 (1990).CrossRefGoogle Scholar
4.Ogawa, N., Hirabayashi, I. and Tanaka, S.: Preparation of a high-Jc YBCO bulk superconductor by the platinum doped melt growth method. Physica C 177, 101 (1991).Google Scholar
5.Pinol, S., Sandiumenge, F., Martinze, B., Gomis, V., Fontcuberta, J. and Obradors, X.: Enhanced critical currents by CeO2 additions in directionally solidified YBa2Cu3O7. Appl. Phys. Lett. 65, 1448 (1994).Google Scholar
6.McGinn, P.J., Meugnan, T., Yeung, S. and Banerjee, A.: Improved flux pinning in melt textured YBa2Cu3O7-δ through chemical additions. Appl. Supercond. 4, 563 (1996).CrossRefGoogle Scholar
7.Murakami, M., Morita, M., Doi, K. and Miyamoto, M.: A New process with the promise of high Jc in oxide superconductors. Jpn. J. Appl. Phys. 28, 1189 (1989).Google Scholar
8.Yamaguchi, K., Murakami, M., Fujimoto, H., Kozhizuka, N. and Tanaka, S.: Microstructures of YBaCuO fabricated by melt-powder-melt-growth process. Physica C 185, 2497 (1991).Google Scholar
9.Murakami, M., Sakai, N., Higuchi, T. and Yoo, S.I.: Melt-processed light rare earth element–Ba–Cu–O. Supercond. Sci. Technol. 9, 1015 (1996).Google Scholar
10.Chikumoto, N., Yoshioka, J., Otsuka, M., Hayashi, N. and Murakami, M.: Effect of high-temperature heat-treatment on the pinning properties of melt-textured Nd123. Physica C 281, 253 (1997).CrossRefGoogle Scholar
11.Hu, A., Murakami, M. and Zhou, H.: Ordering oscillation of local composition in melt-processed REBa2Cu3O7-delta superconductors (RE: Sm, Eu, Gd). Appl. Phys. Lett. 83, 1788 (2003).CrossRefGoogle Scholar
12.Hu, A., Sakai, N. and Murakami, M.: Spatial variation of superconducting properties and compositional fluctuation in large melt-processed (Sm–Eu)123 single domains. Physica C 392, 571 (2003).Google Scholar
13.Koblischka, M.R., Muralidhar, M. and Murakami, M.: Flux pinning in ternary (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy melt-processed superconductors. Appl. Phys. Lett. 73, 2351 (1998).CrossRefGoogle Scholar
14.Hu, A., Schatzle, P., Bieger, W., Verges, P., Fuchs, G. and Karbbes, G.: Melt processing and high performance of binary (Nd, Sm)–Ba– Cu–O superconductors. Supercond. Sci. Technol. 12, 301 (1999).CrossRefGoogle Scholar
15.Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I. and Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).Google Scholar
16.Dew-Hughes, D.: Flux pinning mechanisms in type II superconductors. Philos. Mag. 30, 293 (1974).Google Scholar
17.Koblischka, M.R.: Pinning forces and scaling in high-Tc superconductors. Physica C 282, 2193 (1997).CrossRefGoogle Scholar
18.Mochida, T., Huhtinen, H. and Murakami, M.: Flux pinning by Nd4Ba2Cu2O10 inclusions in NdBa2Cu3O7-delta superconductors: A combined effect of point, interface, and delta kappa pinning at elevated temperatures. Phys. Rev. B 62, 1350 (2000).Google Scholar
19.Klein, L., Yacoby, E.R., Yeshurn, Y., Erb, A., Muller-Vogt, G., Breit, V. and Wuhl, H.: Peak effect and scaling of irreversible properties in untwinned Y–Ba–Cu–O crystals. Phys. Rev. B 49, 4403 (1994).CrossRefGoogle ScholarPubMed
20.Koblischka, M.R. and Murakami, M.: Pinning mechanisms in bulk high-Tc superconductors. Supercond. Sci. Technol. 13, 738 (2000).Google Scholar
21.Chen, S.Y., Hsieh, P.C., Chen, I.G. and Wu, M.K.: Effect of nano-sized Sm2BaCuO5 particles addition on the pinning mechanism of Sm–Ba–Cu–O materials. J. Mater. Res. 19, 843 (2004).Google Scholar
22.Shiohara, Y. and Endo, A.: Crystal growth of bulk high-Tc superconducting oxide materials. Mater. Sci. Eng. 19, 1 (1997).Google Scholar
23.Muralidhar, M., Koblischka, M.R. and Murakami, M.: Refinement of secondary phase particles for high critical current densities in (Nd,Eu,Gd)-Ba–Cu–O superconductors. Physica C 313, 232 (1999).CrossRefGoogle Scholar
24.Muralidhar, M. and Murakami, M.: Effect of matrix composition on the flux pinning in a (Nd,Eu,Gd)Ba2Cu3Oy superconductor. Phys. Rev. B 62, 13911 (2000).Google Scholar
25.Muralidhar, M., Koblischka, M.R., Diko, P. and Murakami, M.: Enhancement of Jc by 211 particles in ternary (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy melt-processed superconductors. Appl. Phys. Lett. 76, 91 (2000).Google Scholar
26.Muralidhar, M., Koblischka, M.R. and Murakami, M.: Embedding of 211 particles in NEG-123 superconductors. Supercond. Sci. Technol. 12, 555 (1999).CrossRefGoogle Scholar