Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T02:44:25.888Z Has data issue: false hasContentIssue false

Effect of carbon nanotube content and double-pressing double-sintering method on the tensile strength and bending strength behavior of carbon nanotube-reinforced aluminum composites

Published online by Cambridge University Press:  08 December 2016

A. Yarahmadi*
Affiliation:
Materials Science and Engineering Department, Engineering and Technology Faculty, Imam Khomeini International University (IKIU), Qazvin 34149-16818, Iran
M.T. Noghani
Affiliation:
Materials Science and Engineering Department, Engineering and Technology Faculty, Imam Khomeini International University (IKIU), Qazvin 34149-16818, Iran
M. Rajabi
Affiliation:
Materials Science and Engineering Department, Engineering and Technology Faculty, Imam Khomeini International University (IKIU), Qazvin 34149-16818, Iran
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this research work, planetary ball mill has been used to disperse carbon nanotubes (CNTs) in Al powders. Al-CNT nanocomposite samples have been produced using double pressing double sintering (DPDS) method. The effects of CNTs weight percent and secondary pressing and sintering on the hardness, tensile, and bending strength of Al-CNTs nanocomposites were investigated. Enhancements of about 98% in hardness, 40% in tensile strength, and 20% in bending strength of Al-CNTs nanocomposites were observed as compared with pure Al samples. Using DPDS technique increments of 2.4–16.14% in density has been obtained as compared with the nanocomposites produced by conventional sintering method. The composites were studied by scanning electron microscope and differential thermal analysis. The X-ray diffraction (XRD) was used to identify various phases if present in Al-CNTs nanocomposites.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rajabi, M.: Characterization of Al–SiC composite materials produced by double pressing-double sintering method. Int. J. Eng. Sci. (IUST) 14(2), 2137 (2003).Google Scholar
Rajabi, M., Khodai, M.M., Askari, N., Mirhadi, B., and Oveisi, H.: Evaluation of time effect on mechanical properties of Al–ZrO2 nano-composites produced by microwave sintering. In Second Iran International Aluminum Conference, Arak, Iran, 2012; pp. 1118.Google Scholar
Khodai, M.M., Rajabi, M., Askari, N., Mirhadi, B., and Oveisi, H.: Microwave sintering of aluminum-zirconia nano-composites. In 2nd International Advances in Applied Physics and Materials Science Congress, Antalya, 2012; pp. 125132.Google Scholar
Rajabi, M., Khodai, M.M., and Askari, N.: Microwave-assisted sintering of Al–ZrO2 nano-composites. J. Mater. Sci.: Mater. Electron. 25, 45774584 (2014).Google Scholar
Rajabi, M. and Safaei, M.: Synthesis of Al-SiC composite material by double–pressing double–sintering method. In 4th Annual Congress of Iranian Metallurgy Engineering Society, Tehran, Iran, 1999; pp. 9951004.Google Scholar
Rajabi, M. and Asadipanah, Z.: Production of Al–ZrB2 nano-composites by microwave sintering process. J. Mater. Sci.: Mater. Electron. 26, 61486156 (2015).Google Scholar
Gladman, T., Foularis, G., and Talafi Noghani, M.: Grain refinement of steel by oxidic second phase particles. Mater. Sci. Technol. 15, 14141424 (1999).Google Scholar
Bakshi, S.R., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 4164 (2010).Google Scholar
Thostenson, E.T., Ren, Z.F., and Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 18991912 (2001).CrossRefGoogle Scholar
Ajayan, P.M. and Zhou, O.Z.: Applications of carbon nano-tubes. Topics in Applied Physics 80, 391425 (2001).Google Scholar
Terrones, M.: Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Mater. Res. 33, 419501 (2003).CrossRefGoogle Scholar
Curtin, W.A. and Sheldon, B.W.: CNT-reinforced ceramics and metals. Mater. Today 7, 4449 (2004).Google Scholar
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 5658 (1991).Google Scholar
Popov, V.N.: Carbon nanotubes: Properties and application. Mater. Sci. Eng., R 43(3), 61102 (2004).CrossRefGoogle Scholar
Boesl, B., Lahiri, D., Behdad, S., and Agarwal, A.: Direct observation of carbon nano-tube induced strengthening in aluminum composite via in situ tensile tests. Carbon 69, 7985 (2014).Google Scholar
Gallego, J., Barrault, J., Batiot-Dupeyrat, C., and Mondragon, F.: Inter-shell spacing changes in MWCNT induced by metal–CNT interactions. Micron 44, 463467 (2012).Google Scholar
Xu, C.L., Wei, B.Q., Ma, R.Z., Liang, J., Ma, X.K., and Wu, D.H.: Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37, 855858 (1999).Google Scholar
Zhong, R., Cong, H., and Hou, P.: Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, 848851 (2002). (letters to the editor).Google Scholar
Kuzumaki, T., Miyazawa, K., and Ichinose, H.: Processing of carbon nanotubes aluminum composite. Mater. Res. 13, 24452449 (1998).Google Scholar
Perez-Bustamante, R., Estrada-Guel, I., Antunez-Flores, W., Miki-Yoshida, M., Ferreira, P.J., and Martinez-Sanchez, R.: Novel Al-matrix nano-composites reinforced with multi-walled carbon nanotubes. J. Alloys Compd. 450(1–2), 323326 (2008).Google Scholar
Esawi, A.M.K. and Borady, M.A.: Carbon nanotube-reinforced aluminum strips. Compos. Sci. Technol. 68(2), 486492 (2008).Google Scholar
Deng, C.F., Wang, D.Z., Zhang, X.X., and Li, A.B.: Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci. Eng., A 444(1–2), 138145 (2007).Google Scholar
George, R., Kashyap, K.T., Rahul, R., and Yamdagni, S.: Strengthening in carbon nanotube/aluminum (CNT/Al) composites. Scr. Mater. 53, 11591163 (2005).CrossRefGoogle Scholar
Esawi, A.M.K. and Morsi, K.: Dispersion of carbon nanotubes (CNT) in aluminum powder. Composites, Part A 38(2), 646650 (2007).Google Scholar
Esawi, A.M.K. and Morsi, K.: Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. J. Mater. Sci. 42, 49544959 (2007).Google Scholar
Esawi, A.M.K., Morsi, K., Sayed, A., Abdel Gawad, A., and Borah, P.: Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater. Sci. Eng., A 508, 167173 (2009).Google Scholar
Choi, H.J., Kwon, G.B., Lee, G.Y., Bae, D.H.: Reinforcement with carbon nanotubes in aluminum matrix composites. Scr. Mater. 59, 360363 (2008).Google Scholar
Yarahmadi, A., Rajabi, M., Talafi Noghani, M., and Taghiabadi, R.: Synthesis of aluminum-CNTs composites using double-pressing double-sintering method. J. Nano Structure (2016), accepted.Google Scholar
Noguchi, T., Magario, A., Fukazawa, S., Shimizu, S., Beppu, J., and Seki, M.: Carbon nanotube/aluminum composites with uniform dispersion. Mater. Trans. 45(2), 602 (2004).Google Scholar
Zhou, Y., Yang, W., Xia, Y., and Mallick, P.K.: An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates. Mater. Sci. Eng., A 362, 112117 (2003).Google Scholar
Zhang, X.X., Deng, C.F., and Wang, D.Z.: Damping characterization of carbon nanotubes/aluminium matrix composites. Mater. Lett. 61, 32293231 (2007).Google Scholar
Dias, A., Moreira, R.L., Mohallem, N.D.S., and Persiano, A.I.: Microstructrual dependence of the magnetic properties of sintered NiZn ferrites from hydrothermal powders. J. Magn. Magn. Mater. 172, L9L14 (1997).Google Scholar
Cha, S.I., Kim, K.T., Arshad, S.N., and Hong, S.H.: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nano-composites processed by molecular-level mixing. Adv. Mater. 17, 13771381 (2008).Google Scholar
Viereckl, L.Q., Rottmair, A., and Singer, R.F.: Improved processing of carbon nanotube/magnesium alloy composites. Compos. Sci. Technol. 69, 11931199 (2009).Google Scholar
Li, H., Misra, A., Zhu, Y., Horita, Z., Koch, C.C., Holesingerd, T.G.: Processing and characterization of nanostructured Cu-carbon nanotube composites. Mater. Sci. Eng., A 523, 6064 (2009).Google Scholar
Lahiri, D., Bakshi, S.R., Keshri, A.K., Liu, Y., and Agarwal, A.: Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Mater. Sci. Eng., A 523, 263270 (2009).Google Scholar
Kim, K.T., Cha, S.I., Gemming, T., Eckert, J., and Hong, S.H.: The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon nanotube-reinforced metal matrix nanocomposites. Small 4, 19361940 (2008).Google Scholar
Coleman, J.N., Cadek, M., Blake, R., Nicolosi, V., Ryan, K.P., Belton, C., Fonseca, A., Nagy, J.B., Gunko, Y.K., and Blau, W.J.: High-performance nanotube reinforced plastics: Understanding the mechanism of strength increase. Adv. Funct. Mater. 14, 791798 (2004).Google Scholar
Kuzumaki, T., Miyazawa, K., and Ichinose, H.: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13, 24452449 (1998).Google Scholar
Raviathul Basariya, M., Srivastava, V.C., and Mukhopadhyay, N.K.: Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater. Des. 61, 542 (2014).Google Scholar
Zhan, G.D., Kuntz, J.D., Wan, J., and Mukherjee, A.K.: Single-wall carbon nanotubes as attractive toughening agents in alumina-based nano-composites. Nat. Mater. 2, 3842 (2003).Google Scholar