Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:30:40.809Z Has data issue: false hasContentIssue false

Effect of annealing temperature on the microstructure evolution, mechanical and wear behavior of NiCr–WC–Co HVOF-sprayed coatings

Published online by Cambridge University Press:  26 August 2020

Azzeddine Mazouzi
Affiliation:
Laboratoire des Sciences et Génie des Matériaux (LSGM), Faculté de Génie Mécanique et du Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, 16111 Bab-Ezzouar, Algiers, Algeria
Boubekeur Djerdjare
Affiliation:
Laboratoire des Sciences et Génie des Matériaux (LSGM), Faculté de Génie Mécanique et du Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, 16111 Bab-Ezzouar, Algiers, Algeria
Salim Triaa
Affiliation:
Laboratoire des Sciences et Génie des Matériaux (LSGM), Faculté de Génie Mécanique et du Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, 16111 Bab-Ezzouar, Algiers, Algeria
Amine Rezzoug
Affiliation:
Research Center in Industrial Technologies (CRTI), 16014Cheraga, Algeria
Billel Cheniti
Affiliation:
Research Center in Industrial Technologies (CRTI), 16014Cheraga, Algeria
Samir M. Aouadi*
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, Texas76207, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the present work, the effect of annealing temperature on the microstructure, mechanical and tribological properties of NiCr–WC–Co coatings produced by the high-velocity oxy-fuel (HVOF) technique has been investigated. X-ray diffraction and scanning electron microscopy revealed the dissolution of WC into the NiCr matrix to form W2C and Cr3C2 with the annealing process. This dissolution became complete at 800 °C. The mechanical properties of the coatings were investigated using nano-indentation and Vickers fracture toughness measurements. These measurements suggested that the hardness, Young's modulus, and fracture toughness values increased because of the newly formed carbide phases as a result of the dissolution of the WC particles. The overall properties of the coatings were found to be optimum for annealing temperatures of 800 °C. The wear mechanism appears to be abrasive in the as-sprayed coating, and it becomes a combination of an abrasive and oxidative wear with increasing the annealing temperature.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Magnani, M., Suegama, P.H., Espallargas, N., Dosta, S., Fugivara, C.S., Guilemany, J.M., and Benedetti, A.V.: Influence of HVOF parameters on the corrosion and wear resistance of WC-Co coatings sprayed on AA7050 T7. Surf. Coat. Technol. 202, 47464757 (2008).CrossRefGoogle Scholar
Jafari, M., Han, J.C., Seol, J.B., and Park, C.G.: Tribological properties of HVOF-sprayed WC-Co coatings deposited from Ni-plated powders at elevated temperature. Surf. Coat. Technol. 327, 4858 (2017).CrossRefGoogle Scholar
Zheng, C., Liu, Y., Qin, J., Chen, C., and Ji, R.: Wear behavior of HVOF sprayed WC coating under water-in-oil fracturing fluid condition. Tribol. Int. 115, 2834 (2017).CrossRefGoogle Scholar
Torgerson, T.B., Harris, M.D., Alidokht, S.A., Scharf, T.W., Aouadi, S.M., Chromik, R.R., Zabinski, J.S., and Voevodin, A.A.: Room and elevated temperature sliding wear behavior of cold sprayed Ni-WC composite coatings. Surf. Coat. Technol. 350, 136145 (2018).CrossRefGoogle Scholar
Richert, M. and Leszczyńska, B.M.: Effect of the annealing on the microstructure of HVOF deposited coatings. J. Achiev. Mater. Manuf. Eng. 46, 95102 (2011).Google Scholar
Li, B., Wang, X., Chen, H., Hu, J., Huang, C., and Gou, G.: Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy. J. Alloys Compd. 678, 160166 (2016).CrossRefGoogle Scholar
Tocci, M., Donnini, R., Angella, G., and Pola, A.: Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy. Mater. Charact. 123, 7582 (2017).CrossRefGoogle Scholar
Dehestani, M., Trumble, K., Wang, H., Wang, H., and Stanciu, L.A.: Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy. Mat. Sci. Eng. 703, 214226 (2017).CrossRefGoogle Scholar
Houdková, Š., Smazalová, E., Vostřák, M. and Vostřák, M.: Properties of NiCrBSi coating, as sprayed and remelted by different technologies. Surf. Coat. Technol. 253, 14-26 (2014).CrossRefGoogle Scholar
Yanga, M-S., Liua, X-B., Fanb, J-W., Hea, X-M., Shi, S-H., Fua, G-Y., Wanga, M-D., and Chenc, S-F.: Microstructure and wear behaviors of laser clad NiCr/Cr3C2–WS2 high temperature self-lubricating wear-resistant composite coating. Appl. Surf. Sci. 258, 37573762 (2012).CrossRefGoogle Scholar
Zhou, S., Zeng, X., Hu, Q., and Huang, Y.: Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization. Appl. Surf. Sci. 255, 16461653 (2008).CrossRefGoogle Scholar
Janka, L., Norpoth, J., Trache, R., and Berger, L.M.: Influence of heat treatment on the abrasive wear resistance of a Cr3C2NiCr coating deposited by an ethene-fuelled HVOF spray process. Surf. Coat. Technol. 291, 444451 (2016).CrossRefGoogle Scholar
Houdková, S., Smazalová, E., and Pala, Z.: Effect of heat treatment on the microstructure and properties of HVOF-sprayed Co-Cr-W coating. J. Thermal Spray Technol. 25, 546557 (2016).CrossRefGoogle Scholar
Belamri, A., Ati, A., Braccini, M., and Azem, S.: Hypereutectoid steel coatings obtained by thermal flame spraying — Effect of annealing on microstructure, tribological properties and adhesion energy. Surf. Coat. Technol. 263, 8699 (2016).CrossRefGoogle Scholar
Guo, Y., Liu, Q., and Shang, X.: Investigation on annealing strengthening effect of laser cladding Fe5Cr5Co5SiTiNbMoW high-entropy alloy coating. J. Mater. Res. 33, 33393346 (2018).CrossRefGoogle Scholar
Liu, L., Xu, H., Xiao, J., Wei, X., Zhang, G., and Zhang, C.: Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings. Surf. Coat. Technol. 325, 548554 (2017).CrossRefGoogle Scholar
Bergant, Z., Trdan, U., and Grum, J.: Effect of high-temperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings. Corros. Sci. 88, 372386 (2014).CrossRefGoogle Scholar
Bergant, Z. and Grum, J.: Quality improvement of flame sprayed, heat treated, and remelted NiCrBSi coatings. J. Thermal Spray Technol. 18, 380391 (2009).CrossRefGoogle Scholar
Lua, X-L., Liua, X-B., Yua, P-C., Zhai, Y-J., Qiaoa, S-J., Wanga, M-D., Wanga, Y-G., and Chena, Y.: Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding. Appl. Surf. Sci. 355, 350358 (2015).CrossRefGoogle Scholar
Stewart, D.A., Shipway, P.H., and McCartney, D.G.: Influence of heat treatment on the abrasive wear behaviour of HVOF sprayed WC–Co coatings. Surf. Coat. Technol. 105, 1324 (1998).CrossRefGoogle Scholar
Asl, S.K., Sohi, M.H., Hokamoto, K., and Uemura, M.: Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings. Wear 260, 12031208 (2006).CrossRefGoogle Scholar
Wang, T. and Ye, F.: The elevated-temperature wear behavior evolution of HVOF sprayed tungsten carbide coatings: Respond to heat treatment. Internat. J. Refract. Metals Hard Mater. 71, 92100 (2018).CrossRefGoogle Scholar
Murthy, J-K.N., Bysakh, S., Gopinath, K., and Venkataraman, B.: Microstructure dependent erosion in Cr3C2–20 (NiCr) coating deposited by a detonation gun. Surf. Coat. Technol. 202, 112 (2007).CrossRefGoogle Scholar
Murthy, J-K.N., Prasad, K.S., Gopinath, K., and Venkataraman, B.: Characterisation of HVOF sprayed Cr3C2-50 (Ni20Cr) coating and the influence of binder properties on solid particle erosion behaviour. Surf. Coat. Technol. 204, 39753985 (2010).CrossRefGoogle Scholar
Karaoglanli, A.C., Caliskan, H., Oge, M., Doleker, K.M., and Hotamis, M.: Comparison of tribological properties of HVOF sprayed coatings with different composition. Surf. Coat. Technol. 318, 299308 (2017).CrossRefGoogle Scholar
Geng, Z., Li, S., Duan, D-L., and Liu, Y.: Wear behaviour of WC–Co HVOF coatings at different temperatures in air and argon. Wear 330, 348353 (2015).CrossRefGoogle Scholar
Gant, A-J., Nunn, J-W., Gee, M-G., Gorman, D., Gohil, D.D., and Orkney, L.P.: New perspectives in hardmetal abrasion simulation. Wear 376, 214 (2017).CrossRefGoogle Scholar
Liyanage, T., Fisher, G., and Gerlich, A.: Microstructures and abrasive wear performance of PTAW deposited Ni–WC overlays using different Ni-alloy chemistries. Wear 274, 345354 (2012).CrossRefGoogle Scholar
Cheniti, B., Miroud, D., Hvizdoš, P., Balko, J., Sedlák, R., Csanádi, T., Belkessa, B., and Fides, M.: Investigation of WC decarburization effect on the microstructure and wear behavior of WC-Ni hardfacing under dry and alkaline wet conditions. Mater. Chem. Phys. 208, 237247 (2018).CrossRefGoogle Scholar
Tobar, M.J., Álvarez, C., Amado, J-M., Rodríguez, G., and Yáñez, A.: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel. Surf. Coat. Technol. 200, 63136317 (2006).CrossRefGoogle Scholar
Ahn, S-Y. and Kang, S.: Formation of core/rim structures in Ti (C, N)-WC-Ni cermets via a dissolution and precipitation process. J. Am. Ceram. Soc. 83, 14891494 (2000).CrossRefGoogle Scholar
Tang, M., Du, Y., Zhou, P., Wang, S., Zhang, H., Zeng, Y., Liu, S., Chai, X., Peng, Y., Wu, C., Su, X., and Liu, Z-K.: Experimental phase diagram, thermodynamic modeling and solidified microstructure in the Mo–Ni–W ternary system. Calphad 68, 101748 (2020).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
Zhang, Y., Epshteyn, Y., and Chromik, R.R.: Dry sliding wear behaviour of cold-sprayed Cu-MoS2 and Cu-MoS2-WC composite coatings: the influence of WC. Tribol. Int. 123, 296306 (2018).CrossRefGoogle Scholar
Stott, F.H. and Wood, G.C.: The influence of oxides on the friction and wear of alloys. Tribol. Int. 11, 211218 (1978).CrossRefGoogle Scholar
Leyland, A. and Matthews, A.: On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 246, 111 (2000).CrossRefGoogle Scholar
Aouadi, S.M., Gu, J., and Berman, D.: Self-healing ceramic coatings that operate in extreme environments: A review. J. Vac. Sci. Technol. A 38, 050802 (2020).CrossRefGoogle Scholar
Lesage, J. and Chicot, D.: Role of residual stresses on interface toughness of thermally sprayed coatings. Thin Solid Films 415, 143150 (2002).CrossRefGoogle Scholar
Marot, G., Démarécaux, P., Lesage, J., Hadad, M., Siegmann, S., and Staia, M.H.: The interfacial indentation test to determine adhesion and residual stresses in NiCr VPS coatings. Surf. Coat. Technol. 202, 44114416 (2008).CrossRefGoogle Scholar
Evans, A.G. and Charles, E.A.: Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 59, 371372 (1976).CrossRefGoogle Scholar
Zhang, P. and Liu, Z.: Effect of sequential turning and burnishing on the surface integrity of Cr–Ni-based stainless steel formed by laser cladding process. Surf. Coat. Technol. 276, 327335 (2015).CrossRefGoogle Scholar
Yamazaki, Y., Arai, M., Miyashita, Y., Waki, H., and Suzuki, M.: Determination of interfacial fracture toughness of thermal spray coatings by indentation. J. Thermal Spray Technol. 22, 13581365 (2013).CrossRefGoogle Scholar
Lesage, J., Staia, M-H., Chicot, D., Godoy, C., and De Miranda, P.E.V.: Effect of thermal treatments on adhesive properties of a NiCr thermal sprayed coating. Thin Solid Films 377, 681686 (2000).CrossRefGoogle Scholar