Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T13:51:07.287Z Has data issue: false hasContentIssue false

Effect of Ag addition on local structure of Cu–Zr glassy alloy

Published online by Cambridge University Press:  31 January 2011

Dmitri V. Louzguine-Luzgin*
Affiliation:
WPI Advanced Institute for Materials Research, and Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Kostas Georgarakis
Affiliation:
WPI Advanced Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan; and Science et Ingenieurie des Materiaux et Procedes (SIMAP), Institut National Polytechnique de Grenoble, St-Martin-d'Hères Campus, Grenoble, BP 75, 38402, France
Alain R. Yavari
Affiliation:
Science et Ingenieurie des Materiaux et Procedes (SIMAP), Institut National Polytechnique de Grenoble, St-Martin-d'Hères Campus, 38402 Grenoble, France; and WPI Advanced Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Gavin Vaughan
Affiliation:
European Synchrotron Radiation Facility, 38042 Grenoble, France
Guoqiang Xie
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of Ag substituting Cu on the structural features of the Cu55Zr45, Cu45Zr45Ag10, and Cu35Zr45Ag20 glassy alloys was studied using the real-space pair distribution and radial distribution functions. The experimental x-ray diffraction data obtained in a synchrotron beam were used to derive pair and radial distribution functions through Fourier transformation processing. These results suggest that a certain degree of medium-range order in this alloy is maintained up to about 2.5 nm distance. It is suggested that the addition of Ag causes formation of a more homogeneous local atomic structure compared with that of a binary Cu–Zr alloy, which could be considered as a reason for the improved glass-forming ability of this alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klement, W., Willens, R.H., Duwez, P.: Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869 1960Google Scholar
2.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
3.Inoue, A.: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM 36, 866 1995CrossRefGoogle Scholar
4.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 1042 1999Google Scholar
5.Egami, T.: Nano-glass mechanism of bulk metallic glass formation. Mater. Trans. 43, 510 2002Google Scholar
6.Wang, G.Y., Liaw, P.K., Peter, W.H., Yang, B., Yokoyama, Y., Benson, M.L., Green, B.A., Kirkham, M.J., White, S.A., Saleh, T.A., McDaniels, R.L., Steward, R.V., Buchanan, R.A., Liu, C.T., Brooks, C.R.: Fatigue behavior of bulk-metallic glasses. Intermetallics 12, 885 2004Google Scholar
7.Louzguine-Luzgin, D.V., Inoue, A.: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 2005CrossRefGoogle ScholarPubMed
8.Yavari, A.R., Uriarte, J.L., Nishiyama, N., Zhang, T., Inoue, A., Heunen, G.: The glass transition of bulk metallic glasses studied by real-time diffraction in transmission using high-energy synchrotron radiation. Mater. Sci. Eng., A 375–377, 709 2004CrossRefGoogle Scholar
9.Louzguine, D.V., Yavari, A.R., Ota, K., Vaughan, G., Inoue, A.: Synchrotron x-ray radiation diffraction studies of thermal expansion, free volume change and glass transition phenomenon in Cu-based glassy and nanocomposite alloys on heating. J. Non-Cryst. Solids 351, 1639 2005CrossRefGoogle Scholar
10.Louzguine-Luzgin, D.V., Inoue, A., Yavari, A.R., Vaughan, G.: Thermal expansion of a glassy alloy studied using a real-space pair distribution function. Appl. Phys. Lett. 88, 121926 2006CrossRefGoogle Scholar
11.Xu, D., Lohwongwatana, B., Duan, G., Johnson, W.L., Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100-xZrx (X = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64 Zr36 glass. Acta Mater. 52, 2621 2004CrossRefGoogle Scholar
12.Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., Ma, E.: Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 84, 4029 2004Google Scholar
13.Inoue, A., Zhang, W., Saida, J.: Synthesis and fundamental properties of Cu-based bulk glass alloys in binary and multi- component systems. Mater. Trans. 45, 1153 2004CrossRefGoogle Scholar
14.Figuero, I.A., Davis, H.A., Todd, I.: Formation of Cu-Hf-Ti bulk metallic glasses. J. Alloys Compd. 434–435, 164 2007CrossRefGoogle Scholar
15.Zhang, Q., Zhang, W., Inoue, A.: New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm. Scr. Mater. 55, 711 2006CrossRefGoogle Scholar
16.Desré, P.J.: On the effect of the number of components on glass-forming ability of alloys from the liquid state: Application to the new generation of multicomponent bulk glasses. Mater. Trans. JIM 38, 583 1997Google Scholar
17.Yang, Y.J., Xing, D.W., Li, C.P., Wei, S.D., Sun, J.K., Shen, Q.K.: A new way of designing bulk metallic glasses in Cu-Ti-Zr-Ni system. Mater. Sci. Eng., A 448, 15 2007CrossRefGoogle Scholar
18.Jia, P., Guo, H., Li, Y.Xu, J., Ma, E.: A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility. Scr. Mater. 54, 2165 2006CrossRefGoogle Scholar
19.Eckert, J., Das, J., Kim, K.B., Baier, F., Tang, M.B., Wang, W.H., Zhang, Z.F.: High strength ductile Cu-base metallic glass. Intermetallics 14, 876 2006CrossRefGoogle Scholar
20.Inoue, A., Zhang, W., Zhang, T., Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 2001Google Scholar
21.Zhang, W., Inoue, A.: High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system. J. Mater. Res. 21, 234 2006CrossRefGoogle Scholar
22.Dai, C-L., Guo, H., Shen, Y., Li, Y., Ma, E., Xu, J.: A new centimeter-diameter Cu-based bulk metallic glass. Scr. Mater. 54, 1403 2006Google Scholar
23.Sung, D-S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H., Kim, Y.C.: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Metals Mater. Inter. 10, 575 2004CrossRefGoogle Scholar
24.Zhang, Q., Zhang, W., Inoue, A.: Preparation of Cu36Zr48 Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Mater. Trans. 48, 629 2007CrossRefGoogle Scholar
25.Wagner, C.N.J.: Direct methods for the determination of atomic-scale structure of amorphous solids (x-ray, electron, and neutron scattering). J. Non-Cryst. Solids 31, 1 1978CrossRefGoogle Scholar
26.Cromer, D.T.: Compton scattering factors for aspherical free atoms. J. Chem. Phys. 47, 4857 1969CrossRefGoogle Scholar
27.Wagner, C.N.J., Ocken, H., Joshi, M.L.: Interference and radial distribution functions of liquid Cu, Ag, Sn, and Hg. Z. Naturforsch. B 20a, 325 1965Google Scholar
28.International Tables for X-ray Crystallography Vol. 4 edited by J.A. Ibers and W.C. Hamilton Kynoch Birmingem 1974 1Google Scholar
29.Waseda, Y.: The Structure of Non-Crystalline Materials McGraw-Hill New York 1980 26Google Scholar
30.Gale, W.F., Totemeier, T.C.: Smithells Metals Reference Book 8th ed.Elsevier Butterworth-Heinemann Ltd. Oxford, UK 2004 444Google Scholar
31.Louzguine, D.V., Inoue, A.: Nanocrystallization of Cu–(Zr or Hf)–Ti metallic glasses. J. Mater. Res. 17, 2112 2002CrossRefGoogle Scholar
32.Louzguine-Luzgin, D.V., Xie, G., Zhang, W., Inoue, A.: Devitrification behavior and glass-forming ability of Cu–Zr–Ag alloys. Mater. Sci. Eng., A 465, 146 2007CrossRefGoogle Scholar
33.Daams, J.L.C., Villars, P., van Vucht, J.H.N.: Atlas of Crystal Structure Types Vol. 2, ASM International Materials Park, PA 1991 3051Google Scholar
34.Matsubara, E., Tamura, T., Waseda, Y., Inoue, A., Zhang, T., Masumoto, T.: Structural study of Zr60Al15Ni25 amorphous alloys with a wide supercooled liquid region by the anomalous x-ray scattering (AXS) method. Mater. Trans. JIM 33, 873 1992CrossRefGoogle Scholar
35.Sato, S., Sanada, T., Saida, J., Imafuku, M., Matsubara, E., Inoue, A.: Effect of Al on local structures of Zr–Ni and Zr–Cu metallic glasses. Mater. Trans. 46, 2893 2005CrossRefGoogle Scholar
36.Inoue, A., Negishi, T., Kimura, H.M., Zhang, T., Yavari, A.R.: High packing density of Zr- and Pd-based bulk amorphous alloys. Mater. Trans. JIM 39, 318 1998Google Scholar
37.Louzguine-Luzgin, D.V., Yavari, A.R., Fukuhara, M., Ota, K., Xie, G., Vaughan, G., Inoue, A.: Free volume and elastic properties changes in Cu–Zr–Ti–Pd bulk glassy alloy on heating. J. Alloys Compd. 431, 136 2007CrossRefGoogle Scholar
38.Villars, P., Okamoto, H., Prince, A.: Handbook of Ternary Alloy Phase Diagrams vol. 10, ASM International Materials Park, OH 1995 1500Google Scholar
39.Bernal, J.D.: Geometry of the structure of monatomic liquids. Nature 185, 68 1960CrossRefGoogle Scholar
40.Miracle, D.B.: The efficient cluster packing model—An atomic structural model for metallic glasses. Acta Mater. 54, 4317 2006CrossRefGoogle Scholar
41.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., Ma, E.: Atomic packing and short-to-medium range order in metallic glasses. Nature 439, 419 2006Google Scholar
42.Yavari, A.R.: Materials science: A new order in metallic glasses. Nature 439, 405 2006CrossRefGoogle ScholarPubMed
43.Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B., Robinson, D.S.: First x-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 2003CrossRefGoogle ScholarPubMed
44.Dmowski, W., Fan, C., Morrison, M.L., Liaw, P.K., Egami, T.: Structural changes in bulk metallic glass after annealing below the glass-transition temperature. Mater. Sci. Eng., A 471, 125 2007CrossRefGoogle Scholar
45.Hirata, A., Morino, T., Hirotsu, Y., Itoh, K., Fukunaga, T.: Local atomic structure analysis of Zr–Ni and Zr–Cu metallic glasses using electron diffraction. Mater. Trans. 48, 1299 2007Google Scholar
46.Haruyama, O., Sugiyama, K., Sakurai, M., Waseda, Y.: A local structure change of bulk Pd40Ni40P20 glass during full relaxation. J. Non-Cryst. Solids 353, 3053 2007CrossRefGoogle Scholar
47.Hirata, A., Hirotsu, Y., Ohkubo, T., Tanaka, N., Nieh, T.G.: Local atomic structure of Pd–Ni–P bulk metallic glass examined by high-resolution electron microscopy and electron diffraction. Intermetallics 14, 903 2006Google Scholar
48.Yavari, A.R., Le Moulec, A., Inoue, A., Nishiyama, N., Lupu, N., Matsubara, E., Botta, W.J., Vaughan, G., Di Michiel, M., Kvick, A.: Excess free volume in metallic glasses measured by x-ray diffraction. Acta Mater. 53, 1611 2005Google Scholar
49.Hosokawa, S., Berar, J-F., Boudet, N., Ichitsubo, T., Matsubara, E., Pilgrim, W.C., Nishiyama, N.: Partial structure of Pd42.5Ni7.5 Cu30P20 bulk metallic glass: Comparison to the reference Pd40Ni40P20 glass. J. Phys. Conf. Ser. 98, 012013 2008CrossRefGoogle Scholar
50.Waseda, Y., Chen, H.S., Jacob, K.T., Shibata, H.: On the glass forming ability of liquid alloys. Sci. Technol. Adv. Mater. 9, 023003 2008CrossRefGoogle ScholarPubMed
51.Takeuchi, A., Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 2005Google Scholar