Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T11:52:23.707Z Has data issue: false hasContentIssue false

Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding

Published online by Cambridge University Press:  01 April 2006

Seamus A. Curran*
Affiliation:
New Mexico State University, Department of Physics, Las Cruces, New Mexico 88003-8001
Donghui Zhang
Affiliation:
New Mexico State University, Department of Physics, and Department of Chemistry and Biochemistry, Las Cruces, New Mexico 88003-8001
Wudyalew T. Wondmagegn
Affiliation:
New Mexico State University, Department of Physics, and Department of Electrical and Computer Engineering, Las Cruces, New Mexico 88003-8001
Amanda V. Ellis
Affiliation:
Gracefield Research Centre, Industrial Research Ltd., Lower Hutt 6009, New Zealand
Jiri Cech
Affiliation:
Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
Siegmar Roth
Affiliation:
Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
David L. Carroll
Affiliation:
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Composite formation between carbon nanotubes and polymers can dramatically enhance the electrical and thermal properties of the combined materials. We have prepared a composite from polystyrene and multi-walled carbon nanotubes (MWCNT) and, unlike traditional techniques of composite formation, we chose to polymerize styrene from the surface of dithiocarboxylic ester-functionalized MWCNTs to fabricate a unique composite material, a new technique dubbed “gRAFT” polymerization. The thermal stability of the polymer matrix in the covalently linked MWCNT-polystyrene composite is significantly enhanced, as demonstrated by a 15 °C increase of the decomposition temperature than that of the noncovalently linked MWCNT-polystyrene blend. Thin films made from the composite with low MWCNT loadings (<0.9 wt%) are optically transparent, and we see no evidence of aggregation of nanotubes in the thin film or solution. The result from the conductivity measurement as a function of MWCNT loadings suggests two charge transport mechanisms: charge hopping in low MWCNT loadings (0.02–0.6 wt%) and ballistic quantum conduction in high loadings (0.6–0.9 wt%). The composite exhibits dramatically enhanced conductivity up to 33 S m−1 at a low MWCNT loading (0.9 wt%).

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1999), p. 35.Google Scholar
3.Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernández, E.: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. London, Ser. A 362, 2065 (2004).CrossRefGoogle ScholarPubMed
4.Ouyang, M., Huang, J., Lieber, C.M.: Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1018 (2002).CrossRefGoogle Scholar
5.Ugawa, A., Rinzler, A.G., Tanner, D.B.: Far infrared gaps in single-wall carbon nanotubes. Phys. Rev. B 60, R11305 (1999).CrossRefGoogle Scholar
6.Itkis, M.E., Niyogi, S., Meng, M., Hamon, M., Hu, H., Haddon, R.C.: Spectroscopic study of the Fermi level electronic structure of single walled carbon nanotubes. Nano Lett. 2, 155 (2002).CrossRefGoogle Scholar
7.Ouyang, M., Huang, J-L., Cheung, C.L., Lieber, C.M.: Energy gaps in “metallic” single-walled carbon nanotubes. Science 292, 702 (2001).CrossRefGoogle ScholarPubMed
8.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996).CrossRefGoogle ScholarPubMed
9.Hone, J., Llaguno, M.C., Nemes, N.M., Johnson, A.T., Fischer, J.E., Walters, D.A., Casavant, M.J., Schmidt, J., Smalley, R.E.: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77, 666 (2000).CrossRefGoogle Scholar
10.Langer, L., Stockman, L., Heremans, J.P., Bayot, V., Olk, C.H., Van Haesendonck, C., Bruynseraede, Y., Issi, J-P.: Electrical resistance of a carbon nanotube bundle. J. Mater. Res. 9, 927 (1994).CrossRefGoogle Scholar
11.Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).CrossRefGoogle Scholar
12.Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514 (1999).CrossRefGoogle Scholar
13.de Heer, W.A., Châtelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270, 1179 (1995).CrossRefGoogle Scholar
14.Blake, R., Gun’ko, Y.K., Coleman, J., Cadek, M., Fonseca, A., Nagy, J.B., Blau, W.J.: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc. 126, 10226 (2004).CrossRefGoogle ScholarPubMed
15.Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
16.Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science 280, 1744 (1998).CrossRefGoogle ScholarPubMed
17.Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 12, 750 (2000).3.0.CO;2-6>CrossRefGoogle Scholar
18.Murakami, H., Nomura, T., Nakashima, N.: Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378, 481 (2003).CrossRefGoogle Scholar
19.Hedderman, T.G., Keogh, S.M., Chambers, G., Byrne, H.J.: Solubilization of SWNTs with organic dye molecules. J. Phys. Chem. B 108, 18860 (2004).CrossRefGoogle Scholar
20.Zhang, J., Lee, J-K., Wu, Y., Murray, R.W.: Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 3, 403 (2003).CrossRefGoogle Scholar
21.Lin, Y., Rao, A.M., Sadanadan, B., Kenik, E.A., Sun, Y-P.: Functionalizing multiple-walled carbon nanotubes with aminopolymers. J. Phys. Chem. B 106, 1294 (2002).CrossRefGoogle Scholar
22.Kong, H., Gao, C., Yan, D.: Controlled functionalization of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412 (2004).CrossRefGoogle Scholar
23.Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y., Ajayan, P.M.: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).CrossRefGoogle ScholarPubMed
24.Qin, S., Qin, D., Ford, W.T., Resasco, D.E., Herrera, J.E.: Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37, 752 (2004).CrossRefGoogle Scholar
25.Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N. Wong Shi, Shim, M., Li, Y., Kim, W., Utz, P.J., Dai, H.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100, 4984 (2003).CrossRefGoogle ScholarPubMed
26.Azamian, B.R., Coleman, K.S., Davis, J.J., Hanson, N., Green, M.L.H.: Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 4, 366 (2002).CrossRefGoogle Scholar
27.Banerjee, S., Stanislaus, S. Wong: In situ quantum dot growth on multi-walled carbon nanotubes. J. Am. Chem. Soc. 125, 10342 (2003).CrossRefGoogle Scholar
28.Chaudhary, S., Kim, J.H., Singh, K.V., Ozkan, M.: Fluorescence microscopy visualization of single-walled carbon nanotubes using semiconductor nanocrystals. Nano Lett. 4, 2415 (2004).CrossRefGoogle Scholar
29.Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E.: Electronic structure control of single-wall carbon nanotube functionalization. Science 301, 1519 (2003).CrossRefGoogle Scholar
30.Curran, S.A., Ajayan, P.M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Davey, A.P., Drury, A., McCarthy, B., Maier, S., Strevens, A.: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv. Mater. 10, 1091 (1998).3.0.CO;2-L>CrossRefGoogle Scholar
31.Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212 (1994).CrossRefGoogle Scholar
32.Lin, Y., Zhou, B., Fernado, K.A.S., Liu, P., Allard, L.F., Sun, Y-P.: Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36, 7199 (2003).CrossRefGoogle Scholar
33.Kaiser, A.B.: Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1 (2001).CrossRefGoogle Scholar
34.Kim, B., Lee, J., Yu, I.: Electrical properties of single-wall carbon nanotube and epoxy composites. J. Appl. Phys. 94, 6724 (2003).CrossRefGoogle Scholar
35.Grimes, C.A., Mungle, C., Kouzoudis, D., Fang, S., Eklund, P.C.: The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem. Phys. Lett. 319, 460 (2000).CrossRefGoogle Scholar
36.Coleman, J.N., Curran, S.A., Dalton, A.B., Davey, A.P., McCarthy, B., Blau, W.J., Barklie, R.C.: Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B 58, R7492 (1998).CrossRefGoogle Scholar
37.Allaoui, A., Bai, S., Cheng, H.M., Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 1993 (2002).CrossRefGoogle Scholar
38.Farmer, S.C., Patten, T.E.: (Thiocarbonyl-α-thio)carboxylic acid derivatives as transfer agents in reversible addition-fragmentation chain-transfer polymerizations. J. Polym. Sci. Part A: Polym. Chem. 40, 555 (2002).CrossRefGoogle Scholar
39.Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992).CrossRefGoogle Scholar
40.Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M.: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52 (1998).CrossRefGoogle ScholarPubMed
41.Satishkumar, B.C., Govindaraj, A., Mofokeng, J., Subbanna, G.N., Rao, C.N.R.: Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B: At. Mol. Opt. Phys. 29, 4925 (1996).CrossRefGoogle Scholar
42.Zhang, N., Xie, J., Varadan, V.K.: Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Mater. Struct. 11, 962 (2002).CrossRefGoogle Scholar
43.Sudalai, A., Kanagasabapathy, S., Benicewicz, B.S.: Phosphorus pentasulfide: A mild and versatile catalyst/reagent for the preparation of dithiocarboxylic esters. Org. Lett. 2, 3213 (2000).CrossRefGoogle ScholarPubMed
44.Fourier, J., Boiteax, G., Seytre, G., Marichy, G.: Percolation network of polypyrrole in conducting polymer composites. Synth. Met. 84, 839 (1997).CrossRefGoogle Scholar
45.Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, C., Vathauer, M., Warth, H.: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymers 45, 739 (2004).CrossRefGoogle Scholar
46.Pötschke, P., Bhattacharyya, A.R., Janke, A.: Melt mixing of polycarbonate with multi-walled carbon nanotubes: microscopic studies on the state of dispersion. Eur. Polym. J. 40, 137 (2003).CrossRefGoogle Scholar
47.Foygel, M., Morris, R.D., Anez, D., French, S., Sobolev, V.L.: Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 71, 104201 (2005).CrossRefGoogle Scholar
48.Carmona, F., Mouney, C.: Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers. J. Mater. Sci. 27, 1322 (1992).CrossRefGoogle Scholar
49.Langer, L., Bayot, V., Grivei, E., Issi, J-P., Heremans, J.P., Olk, C.H., Stockman, L., van Haesendonck, C., Bruynseraede, Y.: Quantum transport in a multi-walled carbon nanotube. Phys. Rev. Lett. 76, 479 (1996).CrossRefGoogle Scholar
50.Chico, L., Benedict, L.X., Louie, S.G., Cohen, M.L.: Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 54, 2600 (1996).CrossRefGoogle ScholarPubMed
51.Sanvito, S., Kwon, Y-K., Tomanek, D., Lámbert, C.J.: Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 84, 1974 (2000).CrossRefGoogle ScholarPubMed
52.Levi, N., Czerw, R., Xing, S., Iyer, P., Carroll, D.L.: Properties of polyvinylidene difluoride-carbon nanotube blends. Nano Lett. 4, 1267 (2004).CrossRefGoogle Scholar