Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T21:14:49.079Z Has data issue: false hasContentIssue false

Direct synthesis of ultra-thin large area transition metal dichalcogenides and their heterostructures on stretchable polymer surfaces

Published online by Cambridge University Press:  03 March 2016

Michael E. McConney
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
Nicholas R. Glavin
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
Abigail T. Juhl
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
Michael H. Check
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
Michael F. Durstock
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
Andrey A. Voevodin
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
Travis E. Shelton
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA; and University of Dayton Research Institute, Dayton, Ohio 45469, USA
John E. Bultman
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA; and University of Dayton Research Institute, Dayton, Ohio 45469, USA
Jianjun Hu
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA; and University of Dayton Research Institute, Dayton, Ohio 45469, USA
Michael L. Jespersen
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA; and University of Dayton Research Institute, Dayton, Ohio 45469, USA
Maneesh K. Gupta
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA; and University of Dayton Research Institute, Dayton, Ohio 45469, USA
Rachel D. Naguy
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA; and University of Dayton Research Institute, Dayton, Ohio 45469, USA
Jennifer G. Colborn
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA; and Department of Mechanical Engineering, University of Dayton, Dayton, Ohio 45469, USA
Aman Haque
Affiliation:
Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, USA
Phillip T. Hagerty
Affiliation:
Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469, USA; Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
Randall E. Stevenson
Affiliation:
Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469, USA; Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
Christopher Muratore*
Affiliation:
Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469, USA; Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A scalable approach for synthesis of ultra-thin (<10 nm) transition metal dichalcogenides (TMD) films on stretchable polymeric materials is presented. Specifically, magnetron sputtering from pure TMD targets, such as MoS2 and WS2, was used for growth of amorphous precursor films at room temperature on polydimethylsiloxane substrates. Stacks of different TMD films were grown upon each other and integrated with optically transparent insulating layers such as boron nitride. These precursor films were subsequently laser annealed to form high quality, few-layer crystalline TMDs. This combination of sputtering and laser annealing is commercially scalable and lends itself well to patterning. Analysis by Raman spectroscopy, scanning probe, optical, and transmission electron microscopy, and x-ray photoelectron spectroscopy confirm our assertions and illustrate annealing mechanisms. Electrical properties of simple devices built on flexible substrates are correlated to annealing processes. This new approach is a significant step toward commercial-scale stretchable 2D heterostructured nanoelectronic devices.

Type
Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akinwande, D., Petrone, N., and Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).CrossRefGoogle ScholarPubMed
Fivaz, R. and Mooser, R.: Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743755 (1967).CrossRefGoogle Scholar
Böker, T., Severin, R., Müller, A., Janowitz, C., Manzke, R., Voß, D., Krüger, P., Mazur, A., and Pollmann, J.: Band structure of MoS2, MoSe2, and a-MoTe2: Angle-resolved photoelectron spectroscopy and Ab initio calculations. Phys. Rev. B 64, 235305 (2001).CrossRefGoogle Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle ScholarPubMed
Lee, G-H., Yu, Y-J., Cui, X., Petrone, N., Lee, C-H., Choi, M.S., Lee, D-Y., Lee, C., Yoo, W.J., and Watanabe, K.: Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 79317936 (2013).CrossRefGoogle ScholarPubMed
Geim, A.K. and Grigorieva, I.V.: van der Waals heterostructures. Nature 499, 419425 (2013).CrossRefGoogle ScholarPubMed
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699712 (2012).CrossRefGoogle ScholarPubMed
Coleman, J.N., Lotya, M., O'Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., and Smith, R.J.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568571 (2011).CrossRefGoogle ScholarPubMed
Niu, L., Li, K., Zhen, H., Chui, Y-S., Zhang, W., Yan, F., and Zheng, Z.: Salt-assisted high-throughput synthesis of single- and few-layer transition metal dichalcogenides and their application in organic solar cells. Small 10, 46514657 (2014).CrossRefGoogle ScholarPubMed
Smith, R.J., King, P.J., Lotya, M., Wirtz, C., Khan, U., De, S., O’Neill, A., Duesberg, G.S., Grunlan, J.C., and Moriarty, G.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 39443948 (2011).CrossRefGoogle ScholarPubMed
Yu, Y., Li, C., Liu, Y., Su, L., Zhang, Y., and Cao, L.: Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 18661871 (2013).CrossRefGoogle ScholarPubMed
Lee, Y-H., Zhang, X-Q., Zhang, W., Chang, M-T., Lin, C-T., Chang, K-D., Yu, Y-C., Wang, Y.T-W., Chang, C-S., and Li, L-J.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 23202325 (2012).CrossRefGoogle ScholarPubMed
Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., and Lou, J.: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966971 (2012).CrossRefGoogle Scholar
Lee, Y-H., Yu, L., Wang, H., Fang, W., Ling, X., Shi, Y., Lin, C-T., Huang, J-K., Chang, M-T., and Chang, C-S.: Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 18521857 (2013).CrossRefGoogle ScholarPubMed
Salvatore, G.A., Münzenrieder, N., Barraud, C., Petti, L., Zysset, C., Büthe, L., Ensslin, K., and Tröster, G.: Fabrication and transfer of flexible few-layer MoS2 thin film transistors to any arbitrary substrate. ACS Nano 7, 88098815 (2013).CrossRefGoogle Scholar
Wang, X., Feng, H., Wu, Y., and Jiao, L.: Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 53045307 (2013).CrossRefGoogle ScholarPubMed
Muratore, C., Hu, J.J., Wang, B., Haque, M.A., Bultman, J.E., Jespersen, M.L., Shamberger, P.J., McConney, M.E., Naguy, R.D., and Voevodin, A.A.: Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014).CrossRefGoogle Scholar
Tao, J., Chai, J., Lu, X., Wong, L.M., Wong, T.I., Pan, J., Xiong, Q., Chi, D., and Wang, S.: Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 7, 24972503 (2015).CrossRefGoogle ScholarPubMed
Alam, T., Wang, B., Pulavarthy, R., Haque, M.A., Muratore, C., Glavin, N., Roy, A.K., and Voevodin, A.A.: Domain engineering of physical vapor deposited two-dimensional materials. Appl. Phys. Lett. 105, 213110 (2014).CrossRefGoogle Scholar
Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., and Whitesides, G.M.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146149 (1998).CrossRefGoogle Scholar
Huck, W.T.S., Bowden, N., Onck, P., Pardoen, T., Hutchinson, J.W., and Whitesides, G.M.: Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16, 34973501 (2000).CrossRefGoogle Scholar
Cerda, E. and Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302-1074302-4 (2003).CrossRefGoogle ScholarPubMed
Lacour, S.P., Wagner, S., Huang, Z., and Suo, Z.: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 24042406 (2003).CrossRefGoogle Scholar
Yu, H.Y., Kim, C., and Sanday, S.C.: Buckle formation in vacuum-deposited thin films. Thin Solid Films 196, 229233 (1991).CrossRefGoogle Scholar
Rogers, J.A., Someya, T., and Huang, Y.: Materials and mechanics for stretchable electronics. Science 327, 16031607 (2010).CrossRefGoogle ScholarPubMed
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., and Ryu, S.: Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 26952700 (2010).CrossRefGoogle ScholarPubMed
Castellanos-Gomez, A., Barkelid, M., Goossens, A.M., Calado, V.E., van der Zant, H.S.J., and Steele, G.A.: Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 12, 31873192 (2012).CrossRefGoogle ScholarPubMed
Dickinson, R.G. and Pauling, L.: The Crystal structure of molybdenite. J. Am. Chem. Soc. 45, 14661471 (1923).CrossRefGoogle Scholar
Papageorgopoulos, C.A. and Jaegermann, W.: Li intercalation across and along the van der Waals surfaces of MoS2(0001). Surf. Sci. 338, 8393 (1995).CrossRefGoogle Scholar
Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., and Chhowalla, M.: Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 51115116 (2011).CrossRefGoogle ScholarPubMed
Muratore, C., Varshney, V., Gengler, J.J., Hu, J.J., Roy, A.K., Farmer, B.L., and Voevodin, A.A.: Thermal anisotropy in nano-crystalline MoS2 thin films. Phys. Chem. Chem. Phys. 16, 10081014 (2014).CrossRefGoogle ScholarPubMed
Muratore, C., Varshney, V., Gengler, J.J., Bultman, J.E., Hu, J.J., Smith, T.M., Shamberger, P.J., Qiu, B., Ruan, X., Roy, A.K., and Voevodin, A.A.: Cross-plane thermal properties of transition metal dichalcogenides. Appl. Phys. Lett. 102, 081604 (2013).CrossRefGoogle Scholar