Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T00:07:50.272Z Has data issue: false hasContentIssue false

Direct measurement of crack shielding in ceramics by the application of Raman microprobe spectroscopy

Published online by Cambridge University Press:  03 March 2011

Daniel J. Belnap
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
Jing-Fong Tsai
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
Dinesh K. Shetty
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
Get access

Abstract

Raman microprobe spectroscopy was employed to measure stresses in ceria partially stabilized zirconia/alumina (Ce-TZP/Al2O3) composites toughened by transformation zone shielding. The near crack-tip stresses in in situ loaded compact specimens were measured by measuring stress-induced shifts in the frequency of a Raman peak corresponding to the tetragonal zirconia phase. The peak shift as a function of the applied stress was separately calibrated using a ball-on-ring flexure test. Both analytical function-fitting methods and numerical methods that determine centroids were evaluated for measuring the shift in the frequency with applied stress. A method based on locating the centroid of the intensity peak with a moving range of frequencies was selected because it gave the best correlation between the frequency shift and the applied stress. The stresses measured within an inner core of the transformation zone (∼30 μm), where the volume fraction of the transformed monoclinic phase was essentially constant, were used to estimate a local crack-tip stress intensity (Kl). The amount of total crack shielding (ΔKs) was then estimated from the applied stress intensity (Ka) and the estimated local crack-tip stress intensity. Comparisons with the predictions of two different theories of zone shielding indicated that transformation toughening models can account for 80 to 89% of the measured crack shielding, depending upon the value of the crack-tip stress intensity assumed in the models.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dally, J. W. and Riley, W. F., Experimental Stress Analysis, 2nd ed. (McGraw-Hill Book Company, New York, 1978).Google Scholar
2Clarke, D. R. and Adar, F., in Advances in Materials Characterization, Materials Science Research, edited by Rossington, D. R., Condrate, R. A., and Snyder, R. L. (Plenum Press, New York, 1983), Vol. 15, pp. 199214.Google Scholar
3Clarke, D. R. and Adar, F., J. Am. Ceram. Soc. 65(6), 284288 (1982).CrossRefGoogle Scholar
4Dauskardt, R. H., Veirs, D. K., and Ritchie, R. O., J. Am. Ceram. Soc. 72(7), 11241130 (1989).CrossRefGoogle Scholar
5Marshall, D. B., Shaw, M. C., Dauskardt, R. H., Ritchie, R. O., Readey, M. J., and Heuer, A. H., J. Am. Ceram. Soc. 73(9) 26592666 (1990).Google Scholar
6Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F. H., and Cardona, M., Solid State Commun. 8, 133138 (1970).CrossRefGoogle Scholar
7Cerdeira, F., Buchenauer, C. J., Pollak, F. H., and Cardona, M., Phys. Rev. B 5(2), 580593 (1972).Google Scholar
8Englert, Th., Abstreiter, G., and Pontcharra, J., Solid-State Electron. 23, 3133 (1980).Google Scholar
9Zorabedian, P. and Adar, F., Appl. Phys. Lett. 43(2), 177179 (1983).CrossRefGoogle Scholar
10Cheong, Y. M., Marcus, H. L., and Adar, F., J. Mater. Res. 2, 902909 (1987).CrossRefGoogle Scholar
11Adar, F. and Clarke, D. R., in Microbeam Analysis-1982, edited by Heinrich, K. F. J. (San Francisco Press Inc., San Francisco, CA, 1982), pp. 307310.Google Scholar
12Robinson, I. M., Young, R. J., Galiotis, C., and Batchelder, D. N., J. Mater. Sci. 22, 36423646 (1987).CrossRefGoogle Scholar
13Galiotis, C., Comp. Sci. Technol. 42, 125150 (1991).Google Scholar
14Mendoza, E. A. and Cannon, W. R., Ceram. Eng. Sci. Proc. 12 (7–8), 14481451 (1991).Google Scholar
15Haerle, A. G., Cannon, W. R., and Denda, M., J. Am. Ceram. Soc. 74(11), 28972901 (1991).CrossRefGoogle Scholar
16Grabner, L., J. Appl. Phys. 49(2), 580583 (1978).CrossRefGoogle Scholar
17Molis, S. E. and Clarke, D. R., J. Am. Ceram. Soc. 73(11), 31893194 (1990).Google Scholar
18Ma, Q. and Clarke, D. R., J. Am. Ceram. Soc. 76(6), 14331440 (1993).Google Scholar
19Kourouklis, G. A. and Liarokapis, E., J. Am. Ceram. Soc. 74(3), 520523 (1991).Google Scholar
20Tsai, J-F., Belnap, J. D., and Shetty, D. K., J. Am. Ceram. Soc. 77(1), 105117 (1994).CrossRefGoogle Scholar
21ASTM E561–81, Standard Practice for R-Curve Determination, in Annual Book of ASTM Standards, Sec. 3, Metals Test Methods and Analytical Procedures (American Society for Testing and Materials, Philadelphia, PA, 1984), pp. 612632.Google Scholar
22Shetty, D. K., Rosenfield, A. R., McGuire, P., Bansal, G. K., and Duckworth, W. H., Am. Ceram. Soc. Bull. 59(12), 11931197 (1980).Google Scholar
23DeWith, G. and Wagemans, H. H. M., J. Am. Ceram. Soc. 72(8), 15381541 (1989).CrossRefGoogle Scholar
24Munro, R. G., Piermarini, G. J., Block, S., and Holzapfel, W. B., J. Appl. Phys. 57(2), 165169 (1985).CrossRefGoogle Scholar
25Toraya, H., Yoshimura, M., and Sōmiya, S., J. Am. Ceram. Soc. 67(6), C-119C–121 (1984).Google Scholar
26Yu, C. S., Shetty, D. K., Shaw, M. C., and Marshall, D. B., J. Am. Ceram. Soc. 75(11), 29912994 (1992).CrossRefGoogle Scholar
27Yu, C. S. and Shetty, D. K., J. Am. Ceram. Soc. 72(6), 921928 (1989).CrossRefGoogle Scholar
28McMeeking, R. M. and Evans, A. G., J. Am. Ceram. Soc. 65(5), 242246 (1982).CrossRefGoogle Scholar
29Budiansky, B., Hutchinson, J. W., and Lambropoulos, J. C., Int. J. Solid Structures 19(4), 337355 (1983).CrossRefGoogle Scholar
30Chen, I-W., J. Am. Ceram. Soc. 74(10), 25642572 (1991).Google Scholar
31Marshall, D. B., J. Am. Ceram. Soc. 73(10), 31193121 (1990).CrossRefGoogle Scholar