Published online by Cambridge University Press: 31 January 2011
An anomalous increase of current was found in Fe-doped titania ceramics subjected to a constant field of 105 V/m. It is suggested that the space charge rises from blockage of O2(g) → O2−(s) ion transfer at the cathode. This leads to an increase of n-conductivity in the cathodic region and p-conductivity in the anodic region according to the specific defect equilibrium. This viewpoint was reinforced by two newly observed phenomena: (i) the I-V plot shows a linear feature at the initial stage, but it gradually becomes a rectifying feature with time; and (ii) an edge-located electrode shows lower current density and faster current saturation compared with a normal electrode.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.