Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T02:38:37.021Z Has data issue: false hasContentIssue false

Diffraction analysis of nonuniform stresses in surface layers: Application to cracked TiN coatings chemically vapor deposited on Mo

Published online by Cambridge University Press:  31 January 2011

W.G. Sloof
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
B. J. Kooi
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
R. Delhez
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Th. H. de Keijser
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
E. J. Mittemeijer
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Get access

Abstract

Variations of residual stresses in layers on substrates can occur in directions parallel and perpendicular to the surface as a result of compositional inhomogeneity and/or porosity or cracks. Diffraction methods to evaluate such stress variations are presented. Comparison of the experimental value for the stress with a calculated value of the “diffraction-averaged stress,” on the basis of a model for the local stresses, proved to be a useful method of stress analysis. It is shown that a direct evaluation of occurring stress-depth profiles is less practical. The method of stress analysis proposed, is applied to chemically vapor deposited TiN coatings on Mo substrates. In these coatings a large tensile stress parallel to the surface develops during cooling from the deposition temperature, due to difference in thermal shrink between coating and substrate. As a result of the cooling-induced stress, cracking of the coating occurs. The mesh width of the crack pattern allows determination of the fracture-surface energy and the fracture toughness of the coating material. Conceiving the cracked coatings as assemblies of freestanding columns, and assuming full elastic accommodation of the thermal mismatch at the column/substrate interface, the stress variations in the coating are calculated. On this basis the diffraction-averaged stress and the depth profile of the laterally averaged stress can be predicted accurately for the cracked TiN layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nix, W. D., Metall. Trans. A 20A, 2217 (1989).CrossRefGoogle Scholar
2.Hoffman, R. W., Thin Solid Films 89, 155 (1982).CrossRefGoogle Scholar
3.Murakami, M., Kuan, T., and Blech, I.A., in Treatise on Mater. Sci. and Technol., edited by Tu, K. N. and Rosenberg, R. (Academic Press, New York, 1982), Vol. 24, pp. 163, 210.Google Scholar
4.D'Heurle, F. M., Int. Mater. Rev. 34, 53 (1989).CrossRefGoogle Scholar
5.Evans, A. G., Dory, M. D., and Hu, M. S., J. Mater. Res. 3, 1043 (1988).CrossRefGoogle Scholar
6.Sloof, W. G., Rijpkema, H. J. M., Delhez, R., de Keijser, Th.H., and Mittemeijer, E. J., Surf. Eng. 3, 59 (1987).CrossRefGoogle Scholar
7.Sloof, W. G., Delhez, R., de Keijser, Th.H., and Mittemeijer, E. J., J. Mater. Sci. 22, 1701 (1987).Google Scholar
8.Sloof, W. G., Somers, M. A. J., Delhez, R., de Keijser, Th.H., and Mittemeijer, E. J., in Residual Stresses in Science and Technology, edited by Macherauch, E. and Hauk, V. (Deutsche Gesellschaft für Metallkunde, Oberursel, 1987), Vol. 1, pp. 493, 500.Google Scholar
9.Delhez, R., de Keijser, Th.H., and Mittemeijer, E. J., Surf. Eng. 3, 331 (1987).CrossRefGoogle Scholar
10.Somers, M. A. J. and Mittemeijer, E. J., Metall. Trans. A 21A, 189 (1990).CrossRefGoogle Scholar
11.Komiya, S., Umezu, N., and Hayashi, C., Thin Solid Films 63, 341 (1979).CrossRefGoogle Scholar
12.Mäntylä, T. A., Helevirta, P. J., Lepistö, T. T., and Siitonen, P. T., Thin Solid Films 126, 275 (1985).CrossRefGoogle Scholar
13.Dearnley, P. A., Surf. Eng. 1, 43 (1985).CrossRefGoogle Scholar
14.Brozeit, E. and Gabriel, H. M., Z. Werkstofftech. 11, 31 (1980).CrossRefGoogle Scholar
15.Yoshizawa, I. and Kamada, K., J. Nucl. Mater. 122/123, 1309 (1984).CrossRefGoogle Scholar
16.Noyan, I. C. and Cohen, J.B., in Residual Stress-Measurement by Diffraction and Interpretation (Springer-Verlag Inc., New York, 1987), p. 121.Google Scholar
17.Hauk, V. and Macherauch, E., in Adv. X-Ray Anal., edited by Cohen, J. B.et al. (Plenum Press, New York, 1984), Vol. 27, pp. 81, 99.Google Scholar
18.Behnken, H. and Hauk, V., Z. Metallk. 77, 620 (1986).Google Scholar
19.Eigenmann, B., Scholtes, B., and Macherauch, E., Mater.-wiss. u. Werkstofftech. 21, 257 (1990).CrossRefGoogle Scholar
20.Moore, M.G. and Evans, W.P., Trans. Soc. Automotive Eng. (SAE) 66, 340 (1958).Google Scholar
21.Bastin, G. F., Heijligers, H.J.M., and van Loo, F. J. J., Scanning 8, 45 (1986).CrossRefGoogle Scholar
22.Hubbard, C. R., J. Appl. Crystallogr. 16, 285 (1983).CrossRefGoogle Scholar
23.Barrett, C. S. and Massalski, T. B., in Structure of Metals (Perga-mon Press, Oxford, England, 1980), p. 204.Google Scholar
24.Kieffer, R. and Beneskovsky, F., in Hartstoffe (Springer, Wien, Austria, 1963), p. 303.CrossRefGoogle Scholar
25.Perry, A. J., Thin Solid Films 193/194, 463 (1990).CrossRefGoogle Scholar
26.Jiang, X., Wang, M., Schmidt, K., Dunlop, E., Haupt, J., and Gissler, W., J. Appl. Phys. 69, 3053 (1991).CrossRefGoogle Scholar
27.Stone, D. S., Yoder, K. B., and Sproul, W. D., J. Vac. Sci Technol. A 9, 2543 (1991).CrossRefGoogle Scholar
28.Sue, J.A., Surf. Coating Technol. 54/55, 154 (1992).CrossRefGoogle Scholar
29.Birkhölzer, J. and Hauk, V., Härterei-Tech. Mitt. 48, 25 (1993).Google Scholar
30.Sundgren, J-E., Thin Solid Films 128, 21 (1985).CrossRefGoogle Scholar
31.Perry, A. J., Thin Solid Films 170, 63 (1989).CrossRefGoogle Scholar
32.Kress, W., Roedhammer, P., Bilz, H., Teuchert, W. D., and Christensen, A.N., Phys. Rev. B 17, 111 (1978).CrossRefGoogle Scholar
33.Bollenrath, F., Hauk, V., and Müller, E.H., Z. Metallk. 58, 76 (1967).Google Scholar
34.Nagakura, S., Kusunoki, T., Kakimoto, F., and Hirosutu, Y., J. Appl. Crystallogr. 8, 65 (1975).CrossRefGoogle Scholar
35.Wolff, L., Bastin, G. F., and Heijligers, H. Y. M., Solid State Ionics 16, 105 (1977).CrossRefGoogle Scholar
36.Smithells, C. J. and Brandes, E. A., in Metals Reference Book, 5th ed. (Butterworths / Co. Ltd., London, England, 1976), p. 100.Google Scholar
37.Touloukian, Y. S., Kirby, R.K., Taylor, R.E., and T.Lee, Y. R., in Thermophysical Properties of Matter, Thermal Expansion—Nonmetallic Solids (IFI/Plenum, New York, Washington, DC, 1977), Vol. 13, pp. 1147, 1151.Google Scholar
38.Touloukian, Y. S., Kirby, R.K., Taylor, R.E., and Desai, P.D., in Thermophysical Properties of Matter, Thermal Expansion-Metallic Elements and Alloys (IFI/Plenum, New York, Washington, DC, 1976), Vol. 12, pp. 208, 216.Google Scholar
39.Toth, L. E., in Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), pp. 169, 174.Google Scholar
40.Lawn, B.R., in Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, England, 1993), pp. 1, 15, and 55.CrossRefGoogle Scholar
41.Frost, H.J. and Ashby, M. F., in Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, England, 1982), pp. 80, 83.Google Scholar
42.Sloof, W. G. Ph.D. Thesis (Delft University Press, The Netherlands, 1996).Google Scholar
43.Aleck, B.J., J. Appl. Mech. 16, 118 (1949).CrossRefGoogle Scholar
44.Blech, I.A. and Levi, A.A., J. Appl. Mech. 48, 442 (1981).CrossRefGoogle Scholar
45.Blech, J. J. and Kantor, Y., Computers and Structures 18, 609 (1984).CrossRefGoogle Scholar
46.Suo, Z., J. Vac. Sci. Technol. A 11, 1367 (1993).CrossRefGoogle Scholar
47.Hu, M. S., Thouless, M. D., and Evans, A. G., Acta Metall. 36, 1301 (1988).CrossRefGoogle Scholar
48.Drory, M. D., Thouless, M. D., and Evans, A. G., Acta Metall. 36, 2019 (1988).CrossRefGoogle Scholar
49.Hu, M.S. and Evans, A.G., Acta Metall. 37, 917 (1989).CrossRefGoogle Scholar
50.Hutchinson, J.W. and Suo, Z., Adv. Appl. Mech. 29, 63 (1992).CrossRefGoogle Scholar
51.Laugier, M. T., J. Mater. Sci. Lett. 2, 419 (1983).CrossRefGoogle Scholar
52. A.Love, E.H., in A Treatise on the Mathematical Theory of Elasticity, 4th ed. (University Press, Cambridge, England, 1952), pp. 74, 91.Google Scholar
53.Timoshenko, S.P. and Goodier, J.N., in Theory of Elasticity, 3rd ed. (McGraw-Hill, Tokyo, Japan, 1982), pp. 1, 14, and 246.Google Scholar
54.van Baal, C.M., Phys. Status Solidi A 77, 521 (1983).CrossRefGoogle Scholar
55.Noyan, I.C., Metall. Trans. A 14A, 1907 (1983).CrossRefGoogle Scholar