Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T16:45:42.406Z Has data issue: false hasContentIssue false

Development of high-k hafnium–aluminum oxide dielectric films using sol–gel process

Published online by Cambridge University Press:  11 August 2014

Leyong Zhu
Affiliation:
Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072, China
Yana Gao
Affiliation:
Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072, China
Xifeng Li*
Affiliation:
Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072, China
X.W. Sun
Affiliation:
Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072, China
Jianhua Zhang*
Affiliation:
Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this paper, high-k hafnium–aluminum oxide (HAO) films were synthesized by the sol–gel technique. The effects of the ratio of Hf and Al on the properties of the HAO films were investigated thoroughly. The average optical transmittance of the HAO films was above 88% within the visible light range and Al incorporation in HfO2 can enlarge the band gap of HAO films. X-ray diffraction (XRD) results showed that Al additive can suppress the crystallization of HfO2 and the HAO films were amorphous in structure. The refractive index of HAO films can be modulated with the ratio of Hf and Al in the HAO films. The HAO films with the ratio of Hf and Al = 2:1 obtained excellent performance including the root mean square (RMS) roughness of 0.26 nm, the relative permittivity of 12.1, the leakage current density of 1.69 × 10−7 A/cm2 at 2 MV/cm, and the etching rate in dilute HF solution less than 1 nm/s.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Street, R.A.: Thin-film transistors. Adv. Mater. 21, 2007 (2009).CrossRefGoogle Scholar
Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).CrossRefGoogle ScholarPubMed
Choi, S., Park, B-Y., and Jung, H-K.: Growth and characterization of sol-gel prepared Gd2O3 films as gate insulators for Zn-Sn-O thin film transistors. Thin Solid Films 534, 291 (2013).CrossRefGoogle Scholar
Shimizu, H., Sato, T., Konagai, S., Ikeda, M., Takahashi, T., and Nishide, T.: Temperature-programmed desorption analyses of sol-gel deposited and crystallized HfO2 films. Jpn. J. Appl. Phys. 46, 4209 (2007).CrossRefGoogle Scholar
Wilk, G.D., Wallace, R.M., and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
Wong, H. and Gritsenko, V.A.: Defects in silicon oxynitride gate dielectric films. Microelectron. Reliab. 42, 597 (2002).CrossRefGoogle Scholar
Tsay, C-Y., Cheng, C-H., and Wang, Y-W.: Properties of transparent yttrium oxide dielectric films prepared by sol-gel process. Ceram. Int. 38, 1677 (2012).CrossRefGoogle Scholar
Li, X.F., Xin, E.L., and Zhang, J.H.: Low-temperature solution-processed zirconium oxide gate insulators for thin-film transistors. IEEE Trans. Electron Devices 60, 3413 (2013).Google Scholar
Song, K., Yang, W., Jung, Y., Jeong, S., and Moon, J.: A solution-processed yttrium oxide gate insulator for high-performance all-solution-processed fully transparent thin film transistors. J. Mater. Chem. 22, 21265 (2012).CrossRefGoogle Scholar
Soo, M.T., Prastomo, N., Matsud, A., Kawamur, G., Mutob, H., Noor, A.F.M., Lockman, Z., and Cheong, K.Y.: Elaboration and characterization of sol-gel derived ZrO2 thin films treated with hot water. Appl. Surf. Sci. 258, 5250 (2012).CrossRefGoogle Scholar
Wang, Z.J., Kumagai, T., Kokawa, H., Tsuaur, J., Ichiki, M., and Maeda, R.: Crystalline phases, microstructures and electrical properties of hafnium oxide films deposited by sol-gel method. J. Cryst. Growth 281, 452 (2005).CrossRefGoogle Scholar
Peng, J., Sun, Q., Wang, S., Wang, H-Q., and Ma, W.: Low-temperature solution-processed alumina as gate dielectric for reducing the operating-voltage of organic field-effect transistors. Appl. Phys. Lett. 103, 061603 (2013).CrossRefGoogle Scholar
Zhang, L., Li, J., Zhang, X.W., Jiang, X.Y., and Zhang, Z.L.: High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature. Appl. Phys. Lett. 95, 072112 (2009).CrossRefGoogle Scholar
Kim, C.S., Jo, S.J., Lee, S.W., Kim, W.J., Baik, H.K., Lee, S.J., Hwang, D.K., and Im, S.: High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistor. Appl. Phys. Lett. 88, 243515 (2006).CrossRefGoogle Scholar
Hsua, C-H., Tseng, C-F., Lai, C-H., Tung, H-H., and Lin, S-Y.: Structural and electrical characteristics of ZrO2-TiO2 thin films by sol-gel method. Mater. Sci. Eng., B 175, 181 (2010).CrossRefGoogle Scholar
Gong, Y-P., Li, A-D., Qian, X., Zhao, C., and Wu, D.: Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol-gel method. J. Phys. D: Appl. Phys. 42, 015405 (2009).CrossRefGoogle Scholar
Khairnar, A.G. and Mahajan, A.M.: Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology. Solid State Sci. 15, 24 (2013).CrossRefGoogle Scholar
Cho, M-H., Roh, Y.S., Whang, C.N., Jeong, K., Choi, H.J., Nam, S.W., Ko, D-H., Lee, J.H., Lee, N.I., and Fujihara, K.: Dielectric characteristics of Al2O3-HfO2 nanolaminates on Si(100). Appl. Phys. Lett. 81, 1071 (2002).CrossRefGoogle Scholar
Park, I-S., Ryu, K-M., Jeong, J., and Ahn, J.: Dielectric stacking effect of Al2O3 and HfO2 in metal-insulator-metal capacitor. IEEE Electron Device Lett. 34, 120 (2013).CrossRefGoogle Scholar
Son, H., Kim, J., Yang, J., Cho, D., and Yi, M.: Improvements in the device characteristics of IZO-based transparent thin-film transistors with co-sputtered HfO2-Al2O3 gate dielectrics. Curr. Appl. Phys. 11, S135 (2011).CrossRefGoogle Scholar
Pei, Z.L., Pereira, L., Gonçalves, G., Barquinha, P., Franco, N., Alves, E., Rego, A.M.B., Martins, R., and Fortunato, E.: Room-temperature cosputtered HfO2-Al2O3 multicomponent gate dielectrics. Electrochem. Solid-State Lett. 12, G65 (2009).CrossRefGoogle Scholar
Hwang, Y.H., Seo, J-S., Yun, J.M., Park, H., Yang, S., Park, S-H.K., and Bae, B-S.: An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater. 5, 1 (2013).Google Scholar
Phani, A.R., Passacantando, M., and Santucci, S.: Synthesis and characterization of hafnium oxide and hafnium aluminate ultra-thin films by a sol-gel spin coating process for microelectronic applications. J. Non-Cryst. Solids 353, 663 (2007).CrossRefGoogle Scholar
Chiou, Y-K., Chang, C-H., Wang, C-C., Lee, K-Y., Wu, T-B., Kwo, R., and Hong, M.J.: Effect of Al incorporation in the Thermal stability of atomic-layer-deposited HfO2 for gate dielectric applications. J. Electrochem. Soc. 154, G99G102 (2007).CrossRefGoogle Scholar
Yoo, Y.B., Park, J.H., Lee, K.H., Lee, H.W., Song, K.M., Lee, S.J., and Baik, H.K.: Solution-processed high-k HfO2 gate dielectric processed under softening temperature of polymer substrates. J. Mater. Chem. C 1, 1651 (2013).CrossRefGoogle Scholar
Yang, W., Song, K., Jung, Y., Jeong, S., and Moon, J.: Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors. J. Mater. Chem. C 1, 4278 (2013).CrossRefGoogle Scholar
Wang, K.J. and Cheong, K.Y.: Investigation of sol-gel derived HfO2 on 4H-SiC. Appl. Surf. Sci. 254, 1981 (2008).CrossRefGoogle Scholar
Kim, J.B., Fuentes-Hernandez, C., Potscavage, W.J. Jr., Zhang, X-H., and Kippelen, B.: Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition. Appl. Phys. Lett. 94, 142107 (2009).CrossRefGoogle Scholar
Vos, R., Arnauts, S., Bovie, I., Onsia, B., Garaud, S., Xu, K., HongYu, Y., Kubicek, S., Rohr, E., Schram, T., Veloso, A., Conard, T., Leunissen, L.H.A., and Mertens, P.W.: Challenges with respect to high-k/metal gate stack etching and cleaning. ECS Trans. 11, 278 (2007).CrossRefGoogle Scholar