Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T02:06:58.495Z Has data issue: false hasContentIssue false

Development and homogeneity of microstructure and texture in a lamellar AlCoCrFeNi2.1 eutectic high-entropy alloy severely strained in the warm-deformation regime

Published online by Cambridge University Press:  01 February 2019

Seelam Rajasekhar Reddy
Affiliation:
Department of Materials Science and Metallurgical Engineering, IIT Hyderabad, Telangana 502285, India
Upender Sunkari
Affiliation:
Department of Materials Science and Metallurgical Engineering, IIT Hyderabad, Telangana 502285, India
Adrianna Lozinko
Affiliation:
Industrial and Materials Science, Chalmers University of Technology, Gothenburg 41296, Sweden
Sheng Guo
Affiliation:
Industrial and Materials Science, Chalmers University of Technology, Gothenburg 41296, Sweden
Pinaki Prasad Bhattacharjee*
Affiliation:
Department of Materials Science and Metallurgical Engineering, IIT Hyderabad, Telangana 502285, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of severe warm rolling on microstructure and texture homogeneities was investigated in a lamellar (L12 + B2) AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA). The EHEA 90% warm-rolled at 400 °C showed disordering of the L12 phase and a remarkable increase in hardness. A much finer microstructure was observed on ND-RD (Normal Direction-Rolling Direction) plane as compared with that on the RD-TD (Rolling Direction-Transverse Direction) plane. The L12/Face Centered Cubic (FCC) phase developed α-fiber texture ND//〈110〉 with a particularly strong brass ({110}〈112〉) component, while the B2 phase developed the usual RD (//〈110〉) and ND (//〈111〉) fibers. Nevertheless, inhomogeneities in texture were noticed. Upon annealing at 800 °C, the ND-RD showed an ultrafine microduplex structure, while the RD-TD showed a retained lamellar structure. A rather uniform microduplex structure evolved after annealing at 1200 °C due to the accelerated kinetics of transformation at higher temperatures. The L12/FCC phase showed the retention of the α-fiber components, while the B2 phase showed stronger ND-fiber after annealing, although inhomogeneities in texture existed.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213218 (2004).CrossRefGoogle Scholar
Zhao, Y.J., Qiao, J.W., Ma, S.G., Gao, M.C., Yang, H.J., Chen, M.W., and Zhang, Y.: A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96, 1015 (2016).CrossRefGoogle Scholar
Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., and Zhang, W.: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 19841992 (2014).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 193 (2014).10.1016/j.pmatsci.2013.10.001CrossRefGoogle Scholar
Yeh, J.W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 17591771 (2013).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 6201, 11531158 (2014).CrossRefGoogle Scholar
Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).CrossRefGoogle ScholarPubMed
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).CrossRefGoogle Scholar
Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, C., Uchic, M.D., and Tiley, J.: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494525 (2014).CrossRefGoogle Scholar
Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 685, 342348 (2017).CrossRefGoogle Scholar
Liu, W., Lu, Z., He, J., Luan, J., Wang, Z., Liu, B., Liu, Y., Chen, M., and Liu, C.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332342 (2016).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183202 (2016).CrossRefGoogle Scholar
Li, Z.M., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124133 (2015).CrossRefGoogle Scholar
Zhang, Z., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., , E.P., Yu, Q., and Ritchie, R.O.: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).CrossRefGoogle ScholarPubMed
Lu, Y.P., Dong, Y., Guo, S., Jiang, L., Kang, H.J., Wang, T.M., Wen, B., Wang, Z.J., Jie, J.C., Cao, Z.Q., Ruan, H.H., and Li, T.J.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).CrossRefGoogle ScholarPubMed
Lu, Y., Gao, X., Jiang, L., Chen, Z., Wang, T., Jie, J., Kang, H., Zhang, Y., Guo, S., Ruan, H., Zhao, Y., Cao, Z., and Li, T.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143150 (2017).CrossRefGoogle Scholar
Wani, I.S., Bhattacharjee, T., Sheikh, S., Lu, Y.P., Chatterjee, S., Bhattacharjee, P.P., Guo, S., and Tsuji, N.: Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Res. Lett. 4, 174179 (2016).CrossRefGoogle Scholar
Wani, I.S., Bhattacharjee, T., Sheikh, S., Bhattacharjee, P.P., Guo, S., and Tsuji, N.: Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng., A 675, 99109 (2016).CrossRefGoogle Scholar
Wani, I., Bhattacharjee, T., Sheikh, S., Lu, Y., Chatterjee, S., Guo, S., Bhattacharjee, P., and Tsuji, N.: Effect of severe cold-rolling and annealing on microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy. IOP Conf. Ser.: Mater. Sci. Eng. 194, 012018 (2017).10.1088/1757-899X/194/1/012018CrossRefGoogle Scholar
Wani, I., Bhattacharjee, T., Sheikh, S., Clark, I., Park, M., Okawa, T., Guo, S., Bhattacharjee, P., and Tsuji, N.: Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 84, 4251 (2017).CrossRefGoogle Scholar
Bhattacharjee, T., Wani, I.S., Sheikh, S., Clark, I.T., Okawa, T., Guo, S., Bhattacharjee, P.P., and Tsuji, N.: Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 3276 (2018).CrossRefGoogle ScholarPubMed
Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd ed., Vol. 24 (Elsevier, Oxford, U.K., 2004); p. 25.Google Scholar
Wani, I.S., Sathiaraj, G.D., Ahmed, M.Z., Reddy, S.R., and Bhattacharjee, P.P.: Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al0.5CoCrFeMnNi high entropy alloy. Mater. Charact. 118, 417424 (2016).CrossRefGoogle Scholar
Furuhara, T., Mizoguchi, T., and Maki, T.: Ultra-fine (α + θ) duplex structure formed by cold rolling and annealing of pearlite. ISIJ Int. 45, 392398 (2005).CrossRefGoogle Scholar
Ball, J. and Gottstein, G.: Large-strain deformation of Ni3Al + B: Part III microstructure, long-range order and mechanical-properties of deformed and recrystallized Ni3Al + B. Intermetallics 2, 205219 (1994).CrossRefGoogle Scholar
Ciuca, O., Tsuchiya, K., Yokoyama, Y., Todaka, Y., and Umemoto, M.: Heterogeneous process of disordering and structural refinement in Ni3Al during severe plastic deformation by high-pressure torsion. Mater. Trans. 51, 1422 (2010).CrossRefGoogle Scholar
Rentenberger, C. and Karnthaler, H.P.: On the evolution of a deformation induced nanostructure in a Ni3Al alloy. Acta Mater. 53, 30313040 (2005).CrossRefGoogle Scholar
Rentenberger, C. and Karnthaler, H.P.: Extensive disordering in long-range-ordered Cu3Au induced by severe plastic deformation studied by transmission electron microscopy. Acta Mater. 56, 25262530 (2008).CrossRefGoogle Scholar
Jang, J.S.C. and Koch, C.C.: Amorphization and disordering of the Ni3Al ordered intermetallic by mechanical milling. J. Mater. Res. 5, 498510 (1990).CrossRefGoogle Scholar
Dadras, M.M. and Morris, D.G.: Mechanical disordering of Fe–28% Al–4% Cr alloy. Scr. Mater. 28, 12451250 (1993).CrossRefGoogle Scholar
Ray, R.K.: Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys. Acta Mater. 43, 38613872 (1995).CrossRefGoogle Scholar
Symons, D.M.: Hydrogen embrittlement of Ni–Cr–Fe alloys. Metall. Mater. Trans. A 28, 655663 (1997).CrossRefGoogle Scholar
Gallagher, P.C.J.: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 1, 24292461 (1970).Google Scholar
Leffers, T. and Ray, R.K.: The brass-type texture and its deviation from the copper-type texture. Prog. Mater. Sci. 54, 351396 (2009).CrossRefGoogle Scholar
Madhavan, R., Ray, R.K., and Suwas, S.: Texture transition in cold-rolled nickel–40 wt% cobalt alloy. Acta Mater. 74, 151164 (2014).10.1016/j.actamat.2014.03.066CrossRefGoogle Scholar
Madhavan, R., Ray, R.K., and Suwas, S.: New insights into the development of microstructure and deformation texture in nickel–60 wt% cobalt alloy. Acta Mater. 78, 222235 (2014).CrossRefGoogle Scholar
Deng, J., Yang, Y., Wang, Y., Chen, J., and Peng, R.: Texture evolution in heavily cold-rolled FeCo–2V alloy during annealing. J. Mater. Sci. Technol. 25, 219224 (2009).Google Scholar
Raabe, D. and Keichel, J.: On the inhomogeneity of the crystallographic rolling texture of polycrystalline Fe3Al. J. Mater. Res. 11, 16941701 (2011).CrossRefGoogle Scholar
Raabe, D., Keichel, J., and Sun, Z.: Microstructure and crystallographic texture of rolled polycrystalline Fe3Al. J. Mater. Sci. 31, 339344 (1996).CrossRefGoogle Scholar
Kad, B.K., Schoenfeld, S.E., Asaro, R.J., McKamey, C.G., and Sikka, V.K.: Deformation textures in Fe3Al alloys: An assessment of dominant slip system activity in the 900–1325 K temperature range of hot working. Acta Mater. 45, 13331350 (1997).CrossRefGoogle Scholar
Ahmed, M.Z. and Bhattacharjee, P.P.: Evolution of microstructure and texture during isothermal annealing of a heavily warm-rolled duplex steel. ISIJ Int. 54, 28442853 (2014).CrossRefGoogle Scholar
Verlinden, B., Driver, J., Samajdar, I., and Doherty, R.D.: Thermo-mechanical Processing of Metallic Materials, 1st ed., Vol. 11 (Elsevier, Oxford, U.K., 2007); p. 179.Google Scholar