Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:19:10.273Z Has data issue: false hasContentIssue false

Determination of size and distribution of second phases using nuclear microscopy

Published online by Cambridge University Press:  31 January 2011

M.B.H. Breese
Affiliation:
Nuclear Physics Laboratory, Keble Road, Oxford University, Oxford OX1 3RH, United Kingdom
L.T. Romano*
Affiliation:
Materials Department, Parks Road, Oxford University, Oxford OX1 3RH, United Kingdom
C.J. Salter
Affiliation:
Materials Department, Parks Road, Oxford University, Oxford OX1 3RH, United Kingdom
G.W. Grime
Affiliation:
Nuclear Physics Laboratory, Keble Road, Oxford University, Oxford OX1 3RH, United Kingdom
F. Watt
Affiliation:
Nuclear Physics Laboratory, Keble Road, Oxford University, Oxford OX1 3RH, United Kingdom
*
a)Current address: XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304.
Get access

Abstract

Nuclear microscopy combines a range of MeV light ion beam analytical techniques such as Proton Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS), and Scanning Transmission Ion Microscopy (STIM). One of the main advantages of using MeV light ion beams for materials characterization is the large analytical volume due to their high penetration depth. This paper shows how nuclear microscopy is used to determine the size and distribution of Pb precipitates in a 40 μm thick alloy sample with a nominal composition of Al–5 wt.% Pb.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johanson, S.A. E. and Campbell, J. L., PIXE—A novel technique for elemental analysis (Wiley, Chichester, 1988).Google Scholar
2.Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
3.Sealock, R. M., Mazzolini, A. P., and Legge, G. J. F., Nucl. Instrum. Methods 218, 217 (1983).CrossRefGoogle Scholar
4.Watt, F., Landsberg, J. P., Grime, G. W., and McDonald, B., Proc. X-ray Microanalysis in Biology (Cambridge University Press, Manchester, 1991, in press).Google Scholar
5.Ion Beam Handbook for Materials Analysis, edited by Mayer, J. W. and Rimini, E. (Academic Press, New York, 1977).Google Scholar
6.Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
7.Channeling Theory, Observations and Applications, edited by Morgan, D. V. (Wiley, London, 1973).Google Scholar
8.McCallum, I.C., McKenzie, C. D., Lucas, M.A., Rossiter, K.G., Short, K.T., and Williams, J. S., Appl. Phys. Lett. 42, 827 (1983).CrossRefGoogle Scholar
9.Romano, L. T., Breese, M. B. H., Grime, G. W., and Watt, F., Nucl. Instrum. Methods B54, 234 (1991).CrossRefGoogle Scholar
10.Jamieson, D. N., Grime, G. W., Watt, F., and Williams, D. A., Inst. Phys. Conf. Ser. 100, 87 (1989).Google Scholar
11.Breese, M. B. H., King, P. J. C., Grime, G. W., Watt, F., Booker, G. R., Whitehurst, J., and Romano, L. T., submitted to J. Appl. Phys. (1992).Google Scholar
12.Breese, M.B.H., Watt, F., Grime, G.W., and King, P. J. C., Inst. Phys. Conf. Ser. 117, 101 (1991).Google Scholar
13.Breese, M.B.H., Landsberg, J.P., King, P.J.C., Grime, G.W., and Watt, F., Nucl. Instrum. Methods B64, 505 (1991).CrossRefGoogle Scholar
14.Principles and Applications of High Energy Ion Microbeams, edited by Watt, F. and Grime, G.W. (Adam Hilger, Bristol, 1987).Google Scholar
15.Ion Beams for Materials Analysis, Bird, J. R. and Williams, I. S., sections 1 and 2 (Academic Press, Sydney, 1989).Google Scholar
16.Jamieson, D.N., Grime, G.W., and Watt, F., Nucl. Instrum. Methods B40/41, 669 (1989).CrossRefGoogle Scholar
17.Grime, G. W., Dawson, M., Marsh, M., McArthur, I. C., and Watt, F., Nucl. Instrum. Methods B54, 52 (1991).CrossRefGoogle Scholar
18.Moore, K.I., Zhang, D.L., and Cantor, B., Acta Metall. Mater. 38, 1327 (1990).CrossRefGoogle Scholar
19.Bench, G. S. and Legge, G.J.F., Nucl. Instrum. Methods B40/41, 655 (1989).CrossRefGoogle Scholar
20.Doolittle, L.R., Nucl. Instrum. Methods B9, 344 (1985), and B15, 227 (1986).CrossRefGoogle Scholar
21.Biersack, J. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar