Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T13:30:56.588Z Has data issue: false hasContentIssue false

Deformation microstructure under microindents in single-crystal Cu using three-dimensional x-ray structural microscopy

Published online by Cambridge University Press:  03 March 2011

Wenge Yang
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
B.C. Larson
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
G.M. Pharr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and University of Tennessee, Knoxville, Tennessee 37996
G.E. Ice
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J.D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J.Z. Tischler
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Wenjun Liu
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The use of three-dimensional x-ray structural microscopy for nondestructive investigations of the deformation microstructure under microindents was demonstrated. Point to point, micrometer-resolution x-ray microbeam measurements of local lattice rotations were made for selected positions under 100-mN Berkovich and conical indents in single-crystal copper. Local lattice orientation measurements were used to extract micrometer by micrometer lattice misorientations and rotation axes along x-ray microbeams. Measurements of the deformation microstructure in symmetry and off-symmetry geometries are reported and discussed in terms of their potential for fundamental deformation investigations.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huang, Y., Xue, Z., Gao, H., Nix, W.D. and Xia, Z.C., J. Mater. Res. 15 1786 (2000).CrossRefGoogle Scholar
2.Robertson, C.F. and Fivel, M.C., J. Mater. Res. 14 2251 (1999).CrossRefGoogle Scholar
3.Swadener, J.G., George, E.P. and Pharr, G.M., J. Mech. Phys. Solids 50 681 (2002).CrossRefGoogle Scholar
4.Xue, Z., Huang, Y., Hwang, K.C. and Li, M., J. Eng. Mater–T ASME, 124 371 (2002).CrossRefGoogle Scholar
5.Nix, W.D. and Gao, H., J. Mech. Phys. Solids 46 411 (1998).CrossRefGoogle Scholar
6.Fleck, N.A. and Hutchinson, J.W., Adv. Appl. Mech. 33 295 (1997).CrossRefGoogle Scholar
7.Ma, Q. and Clarke, D.R., J. Mater. Res. 10 853 (1995).CrossRefGoogle Scholar
8.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P., Appl. Phys. Lett. 77 3749 (2000).CrossRefGoogle Scholar
9.Zielinski, W., Huang, H. and Gerberich, W.W., J. Mater. Res. 8 1300 (1993).CrossRefGoogle Scholar
10.Harvey, S., Huang, H., Venkataraman, S. and Gerberich, W.W., J. Mater. Res. 8 1291 (1993).CrossRefGoogle Scholar
11.Bahr, D.F., Nibur, K.A., Morasch, K.R. and Field, D.P., JOM 55 47 (2003).CrossRefGoogle Scholar
12.Brewer, L.N., Othon, M.A., Young, L.M. and Angeliu, T.M., Microsc. Microanal. 8, 684CD (2002).Google Scholar
13.Hughes, D.A., Hansen, N. and Bammann, D.J., Scr. Mater. 48 147 (2003).CrossRefGoogle Scholar
14.Margulies, L., Winther, G. and Poulsen, H.F., Science 192 2392 (2001).CrossRefGoogle Scholar
15.Poulsen, H.F. and Jensen, D. Juul, Mater. Sci. Forum 408–412, 49 (2002).CrossRefGoogle Scholar
16.Poulsen, H.F. and Schmidt, S., J. Appl. Cryst. 36 319 (2003).CrossRefGoogle Scholar
17.Larson, B.C., Yang, W., Ice, G.E., Budai, J.D. and Tischler, J.Z., Nature 415 887 (2002).CrossRefGoogle Scholar
18.Ice, G.E. and Larson, B.C., Adv. Eng. Mater. 2 643 (2000).3.0.CO;2-U>CrossRefGoogle Scholar
19.Yang, W., Larson, B.C., Ice, G.E., Tischler, J.Z., Budai, J.D., Chung, K-S. and Lowe, W.P., Appl. Phys. Lett. 82 3856 (2003).CrossRefGoogle Scholar
20.Larson, B.C., Yang, W., Tischler, J.Z., Ice, G.E., Budai, J.D., Liu, W. and Weiland, H., Int. J. Plast. 20, 543 (2004).CrossRefGoogle Scholar
21.Chung, J-S. and Ice, G.E., J. Appl. Phys. 86 5249 (1999).CrossRefGoogle Scholar
22.Yang, W., Larson, B.C., Pharr, G.M., Ice, G.E., Swadener, J.G., Budai, J.D., Tischler, J.Z. and Liu, W. in Surface Engineering 2002—Synthesis, Characterization and Applications, edited by Kumar, A., Meng, W.J., Cheng, Y-T., Zabinski, J.S., Doll, G.L., and Veprek, S. (Mater. Res. Soc. Symp. Proc. 750, Warrendale, PA, 2003), pp. 115118.Google Scholar
23.Yang, W., Larson, B.C., Pharr, G.M., Ice, G.E., Tischler, J.Z., Budai, J.D. and Liu, W. in Multiscale Phenomena in Materials—Experiments and Modeling Related to Mechanical Behavior, edited by Zbib, H.M., Lassila, D.H., Levine, L.E., and Hemker, K.J. (Mater. Res. Soc. Symp. Proc. 779, Warrendale, PA, 2003), pp. 207212.Google Scholar
24.Barabash, R., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, K-S. and Yang, W., Appl. Phys. Lett. 79 4 (2001).Google Scholar
25.Gao, H., Huang, Y. and Nix, W.D., Naturwissenschaften 86 507 (1999).CrossRefGoogle Scholar
26.Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C. and Friedman, T.A., J. Appl. Phys 85 1460 (1999).CrossRefGoogle Scholar
27.Fivel, M.C., Robertson, C.F., Canova, G.R. and Boulanger, L., Acta Mater 46 6183 (1998).CrossRefGoogle Scholar