Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T22:04:37.909Z Has data issue: false hasContentIssue false

Damage tolerance and R-curve behavior of Al2O3–ZrO2–Nb multiphase composites with synergistic toughening mechanism

Published online by Cambridge University Press:  31 January 2011

C.F. Gutiérrez-González
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
J.F. Bartolomé*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the present work, the damage tolerance and R-curve behavior of alumina–zirconia–niobium multiphase composites were studied by the indentation strength method. A matrix of yttria-stabilized zirconia (3Y–TZP) strengthened with particles of Al2O3 (ATZ) and an alumina matrix strengthened with particles of 3Y-TZP (ZTA) were prepared by hot press of commercial powders, containing Nb metal particles as reinforcing phase. The crack growth behavior was analyzed, and it was found that stress-induced transformation toughening of ZrO2 and bridging of the Nb inclusions were the two main factors that can shield an advancing crack and exert crack closure stresses on the crack wake. Moreover, on the basis of quantitative toughening analysis, it is argued that a synergistic effect originated from the interaction between the toughening mechanisms of Nb grains and zirconia, takes place in the alumina–zirconia–Nb multiphase composites. This showed that the combined toughening effect was bigger than the sum of the individual toughening effects when either reinforcement acted alone.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bartolome, J.F., Diaz, M.Moya, J.S.: Influence of the metal particle size on the crack growth resistance in mullite-molybdenum composites. J. Am. Ceram. Soc. 73, 2778 2002CrossRefGoogle Scholar
2López-Esteban, S., Bartolome, J.F., Moya, J.S.Tanimoto, T.: Mechanical performance of 3Y-TZP/Ni composites: Tensile, bending and uniaxial fatigue tests. J. Mater. Res. 17, 1592 2002CrossRefGoogle Scholar
3Flinn, B.D., Rühle, M.Evans, A.G.: Toughening in composites of Al2O3 reinforced with Al. Acta Metall. Mater. 37, 3001 1989CrossRefGoogle Scholar
4Sigl, L.S., Mataga, P.A., Dalgleish, B.J., McMeeking, R.M.Evans, A.G.: On the toughness of brittle materials reinforced with a ductile phase. Acta Metall. Mater. 36, 945 1988CrossRefGoogle Scholar
5Zimmermann, A., Hoffman, M., Emmel, T., Gross, D.Rödel, J.: Failure of metal–ceramic composites with spherical inclusions. Acta Mater. 49, 3177 2001CrossRefGoogle Scholar
6Sbaizero, O., Pezzotti, G.Nishida, T.: Fracture energy and R-curve behavior of Al2O3/Mo composites. Acta Mater. 46, 681 1998CrossRefGoogle Scholar
7Raddatz, O., Schneider, G.A., Mackens, W., Vob, H.Claussen, N.: Bridging stresses and R-curves in ceramic/metal composites. J. Eur. Ceram. Soc. 20, 2261 2000CrossRefGoogle Scholar
8Nagendra, N.Jayaram, V.: Fracture and R-curves in high volume fraction Al2O3/Al composites. J. Mater. Res. 15, 1131 2000CrossRefGoogle Scholar
9Heuer, A.H.: Transformation toughening in ZrO2-containing ceramics. J. Am. Ceram. Soc. 70, 689 1987CrossRefGoogle Scholar
10McMeeking, R.M.Evans, A.G.: Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65, 242 1982CrossRefGoogle Scholar
11Chen, R.Z., Chiu, Y.T.Tuan, W.H.: Toughening alumina with both nickel and zirconia inclusions. J. Eur. Ceram. Soc. 20, 1901 2000CrossRefGoogle Scholar
12Sbaizero, O., Roitti, S.Pezzotti, G.: R-curve behavior of alumina toughened with molybdenum and zirconia particles. Mater. Sci. Eng., A Struct. 359, 297 2003CrossRefGoogle Scholar
13Chen, R.Z.Tuan, W.H.: Toughening alumina with silver and zirconia inclusions. J. Eur. Ceram. Soc. 21, 2887 2001CrossRefGoogle Scholar
14Tuan, W.H.Chen, W.R.: Mechanical properties of alumina– zirconia–silver composites. J. Am. Ceram. Soc. 78, 465 1995CrossRefGoogle Scholar
15Stump, D.M.: Toughening and stregthening of ceramics reinforced by dilatant transformations and ductile particles. Int. J. Solids Struct. 28, 669 1991CrossRefGoogle Scholar
16Li, M., Katsube, N.Soboyejo, W.O.: On the interaction between transformation toughening and crack bridging by ductile layers in hybrid composites. J. Compos. Mater. 35, 1079 2001CrossRefGoogle Scholar
17Amazigo, J.C.Budiansky, B.: Interaction of particulate and transformation toughening. J. Mech. Phys. Solids 36, 581 1988CrossRefGoogle Scholar
18Tuan, W.H.Chen, R.Z.: Interactions between toughening mechanisms: Transformation toughening versus plastic deformation. J. Mater. Res. 17, 2921 2002CrossRefGoogle Scholar
19Laurent, Ch., Rousset, A., Bonnefond, P., Oquab, D.Lavelle, B.: Mechanical properties of alumina-metal-zirconia nano-micro hybrid composites. J. Eur. Ceram. Soc. 16, 937 1996CrossRefGoogle Scholar
20Tuan, W.H.Chen, W.R.: The interactions between silver and zirconia inclusions and their effects on the toughening behaviour of Al2O3/(Ag + ZrO2) composites. J. Eur. Ceram. Soc. 14, 37 1994CrossRefGoogle Scholar
21Lalande, J., Scheppokat, S., Janssen, R.Claussen, N.: Toughening of alumina/zirconia ceramic composites with silver particles. J. Eur. Ceram. Soc. 22, 2165 2002CrossRefGoogle Scholar
22Krause, R.F. Jr.: Rising fracture toughness from the bending strength of indented alumina beams. J. Am. Ceram. Soc. 71, 338 1988CrossRefGoogle Scholar
23Braun, L.M., Bennison, S.J.Lawn, B.R.: Objective evaluation of short-crack toughness curves using indentation flaws—Case study on alumina-based ceramics. J. Am. Ceram. Soc. 75, 3049 1992CrossRefGoogle Scholar
24Basu, D.Sarkar, B.K.: Toughness determination of zirconia toughened alumina ceramics from growth of indentation-induced cracks. J. Mater. Res. 11, 3057 1996CrossRefGoogle Scholar
25Smith, S.M.Scattergood, R.O.: Crack-shape effects for indentation fracture toughness measurements. J. Am. Ceram. Soc. 75, 305 1992CrossRefGoogle Scholar
26Li, Ch-W., Lee, D-J.Lui, S-Ch.: R-curve behavior and strength for in situ reinforced silicon nitrides with different microstructures. J. Am. Ceram. Soc. 75, 1777 1992CrossRefGoogle Scholar
27Newman, J.C. Jr.Raju, I.S.: An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 15, 185 1981CrossRefGoogle Scholar
28Kaliszewski, M.S., Behrens, G., Heuer, A.H., Shaw, M.C., Marshall, D.B., Dransmann, G.W., Steinbrech, R.W., Pajares, A., Guiberteau, F., Cumbrera, F.L.Rodriguez, A. Dominguez: Indentation studies on Y2O3-stabilized ZrO2.1. Development of indentation-induced cracks. J. Am. Ceram. Soc. 77, 1185 1994CrossRefGoogle Scholar
29Shetty, D.K., Wright, I.G., Mincer, P.N.Clauer, A.H.: Indentation fracture of WC-Co cermets. J. Mater. Sci. 20, 1873 1985CrossRefGoogle Scholar
30Alcalá, J.Anglada, M.: The Behaviour of Indentation Cracks Under Monotonic Loads in 3Y-TZP,, edited by P. Durán and J.F. Feranández, (Third Euro-Ceramics) 1993 901Google Scholar
31Marshall, D.B.Swain, M.V.: Crack resistance curves in magnesia-partially-stabilized zirconia. J. Am. Ceram. Soc. 71, 399 1988CrossRefGoogle Scholar
32Rodriguez-Suarez, T., Lopez-Esteban, S., Bartolome, J.F.Moya, J.S.: Mechanical properties of alumina-rich magnesium aluminate spinel/tungsten composites. J. Eur. Ceram. Soc. 27, 3339 2007CrossRefGoogle Scholar
33Yang, J-F., Sekino, T., Choa, Y-H., Niihara, K.Ohji, T.: Microstructure and mechanical properties of sinter-post-HIPed Si3N4–SiC composites. J. Am. Ceram. Soc. 84, 406 2001CrossRefGoogle Scholar
34Khan, A., Chan, H.M., Harmer, M.P.Cook, R.F.: Toughness-curve behavior of an alumina–mullite composite. J. Am. Ceram. Soc. 81, 2613 1998CrossRefGoogle Scholar
35Toraya, H., Yoshimura, M.Somiya, S.: Calibration curve for quantitative-analysis of the monoclinic-tetragonal ZrO2 system by x-ray-diffraction. J. Am. Ceram. Soc. 67, C119 1984CrossRefGoogle Scholar
36Smithells, C.S.: Metals Reference Book, Vol. 3, Butterworths London 1967Google Scholar
37Cook, R.F., Liniger, E.G., Steinbrech, R.W.Deuerler, F.: Sigmoidal indentation-strength characteristics of polycrystalline alumina. J. Am. Ceram. Soc. 77, 203 1994CrossRefGoogle Scholar
38Cook, R.F., Pascucci, M.R.Rhodes, W.H.: Lateral cracks and microstructural effects in the indentation fracture of yttria. J. Am. Ceram. Soc. 73, 1873 1990CrossRefGoogle Scholar
39Lee, D.Y., Kim, D.J., Cho, D.H.Lee, M.H.: Effect of Nb2O5 and Y2O3 alloying on the mechanical properties of TZP ceramics. Ceram. Int. 24, 461 1998CrossRefGoogle Scholar
40Ashby, M.F., Blunt, F.J.Bannister, M.: Flow characteristics of highly constrained metal wires. Acta Metall. 37, 1847 1989CrossRefGoogle Scholar
41Heredia, F.E., He, M.Y., Lucas, G.E., Evans, A.G., Deve, H.E.Konitzer, D.: The fracture resistance of directionally solidified dual-phase NiAl reinforced with refractory metals. Acta Metall. Mater. 41, 505 1993CrossRefGoogle Scholar
42Budiansky, B., Hutchinson, J.W.Lambropoulus, J.C.: Continuum theory of dilatant transformation toughening in ceramics. Int. J. Solids Struct. 19, 337 1983CrossRefGoogle Scholar
43Stam, G.Th.M., Van der Giessen, E.Meijers, P.: Effect of transformation-induced shear strains on crack growth in zirconia containing ceramics. Int. J. Solids Struct. 31, 1923 1994CrossRefGoogle Scholar
44Budiansky, B., Amazigo, J.C.Evans, A.G.: Small-scale crack bridging and the fracture-toughness of particulate-reinforced ceramics. J. Mech. Phys. Solids 36, 167 1988CrossRefGoogle Scholar
45McMeeking, R.M.Evans, A.G.: Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65, 242 1982CrossRefGoogle Scholar
46Garvie, R.C., Hannink, R.H.J.Swain, M.V.: X-ray-analysis of the transformed zone in partially stabilized zirconia (PSZ). J. Mater. Sci. Lett. 1, 437 1982CrossRefGoogle Scholar
47Kosmac, T., Wagner, R.Claussen, N.: X-ray determination of transformation depths in ceramics containing tetragonal ZrO2. J. Am. Ceram. Soc. 64, C72 1981CrossRefGoogle Scholar
48Cullity, B.D.: Elements of X-Ray Diffraction Addison-Wesley Reading, MA 1956Google Scholar