Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T18:13:28.413Z Has data issue: false hasContentIssue false

Cyclic indentation of polymers: Instantaneous elastic modulus from reloading, energy analysis, and cyclic creep

Published online by Cambridge University Press:  14 October 2019

Olga Smerdova*
Affiliation:
Département Physique et Mécanique des Matériaux, Institut Pprime, CNRS, ISAE-ENSMA, Université de Poitiers, Futuroscope Chasseneuil F-86962, France
Marina Pecora
Affiliation:
Département Physique et Mécanique des Matériaux, Institut Pprime, CNRS, ISAE-ENSMA, Université de Poitiers, Futuroscope Chasseneuil F-86962, France
Marco Gigliotti
Affiliation:
Département Physique et Mécanique des Matériaux, Institut Pprime, CNRS, ISAE-ENSMA, Université de Poitiers, Futuroscope Chasseneuil F-86962, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An analysis of indentation cyclic behavior of polymers is carried out with the aim to tackle time-dependent behavior of polymer at several time scales by one test. The method consists in cycling the load between a positive close-to-zero value and a maximum peak value (10 mN in this study) for long time with constant loading rate. The short time scale is characterized through the instantaneous elastic modulus determined from reloading curves at each cycle. The advantages of determination of instantaneous elastic modulus from reloading instead of commonly used unloading curves are discussed. The energy dissipation describes viscoelasticity and plasticity at the time scale of one cycle. The evolution of both parameters with cycles along with the cyclic creep describes the long-time viscoelasticity. The cyclic indentation behavior of poly(methyl methacrylate), PR520 epoxy, and high-density polyethylene (HDPE) polymers is analyzed, and a comparison with the macroscopic cyclic behavior of HDPE is presented.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Oliver, W. and Pharr, G.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Briscoe, B.J. and Sebastian, K.S.: The elastoplastic response of poly(methyl methacrylate) to indentation. Proc. R. Soc. London, Ser. A 452, 439 (1996).Google Scholar
Cheng, Y-T. and Cheng, C-H.: General relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles. Appl. Phys. Lett. 87, 111914 (2005).CrossRefGoogle Scholar
Cheng, Y-T. and Cheng, C-H.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).CrossRefGoogle Scholar
Oliveira, G.L., Costa, C.A., Teixeira, S.C.S., and Costa, M.F.: The use of nano- and micro-instrumented indentation tests to evaluate viscoelastic behavior of poly(vinylidene fluoride) (PVDF). Polym. Test. 34, 10 (2014).CrossRefGoogle Scholar
Hardiman, M., Vaughan, T.J., and McCarthy, C.T.: The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polym. Test. 52, 157 (2016).CrossRefGoogle Scholar
Chudoba, T. and Richter, F.: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 148, 191 (2001).CrossRefGoogle Scholar
Feng, G. and Ngan, A.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).CrossRefGoogle Scholar
Chattaraj, S., Pant, P., and Nanavati, H.: Inter-relationships between mechanical properties of glassy polymers from nanoindentation and uniaxial compression. Polymer 144, 128 (2018).CrossRefGoogle Scholar
Beyaoui, M., Mazeran, P-E., Arvieu, M-F., Bigerelle, M., and Guigon, M.: Analysis of nanoindentation curves in the case of bulk amorphous polymers. Int. J. Mater. Res. 100, 943 (2009).CrossRefGoogle Scholar
Tranchida, D., Piccarolo, S., Loos, J., and Alexeev, A.: Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity. Macromolecules 40, 1259 (2007).CrossRefGoogle Scholar
Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
Pharr, G. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).CrossRefGoogle Scholar
Bolshakov, A. and Pharr, G.: Influences of pile up on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).CrossRefGoogle Scholar
Herbert, E., Phani, P.S., and Johanns, K.E.: Nanoindentation of viscoelastic solids: A critical assessment of experimental methods. Curr. Opin. Solid State Mater. Sci. 19, 334 (2015).CrossRefGoogle Scholar
VanLandingham, M.R., Chang, N-K., Drzal, P.L., White, C.C., and Chang, S-H.: Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J. Polym. Sci., Part B: Polym. Phys. 43, 1794 (2005).CrossRefGoogle Scholar
Baral, P., Guillonneau, G., Kermouche, G., Bergheau, J-M., and Loubet, J-L.: Theoretical and experimental analysis of indentation relaxation test. J. Mater. Res. 32, 2286 (2017).CrossRefGoogle Scholar
Tweedie, C. and Van Vliet, K.: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576 (2006).CrossRefGoogle Scholar
Herbert, E.G., Oliver, W.C., and Pharr, G.M.: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41, 1 (2008).CrossRefGoogle Scholar
White, C.C., Vanlandingham, M.R., Drzal, P.L., Chang, N-K., and Chang, S-H.: Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J. Polym. Sci., Part B: Polym. Phys. 43, 1812 (2005).CrossRefGoogle Scholar
Oyen, M. and Cook, R.: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18, 139 (2003).CrossRefGoogle Scholar
Zhang, C.Y., Zhang, Y.W., Zeng, K.Y., and Shen, L.: Characterization of mechanical properties of polymers by nanoindentation tests. Philos. Mag. 86, 4487 (2006).CrossRefGoogle Scholar
Shuman, D.J., Costa, A.L.M., and Andrade, M.S.: Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact. 58, 380 (2007).CrossRefGoogle Scholar
Nguyen, S.T.T., Castagnet, S., and Grandidier, J-C.: Nonlinear viscoelastic contribution to the cyclic accommodation of high density polyethylene in tension: Experiments and modelling. Int. J. Fatigue 55, 166 (2013).CrossRefGoogle Scholar
Vandamme, M. and Ulm, F-J.: Viscoelastic solutions for conical indentation. Int. J. Solids Struct. 43, 3142 (2006).CrossRefGoogle Scholar
Kang, G.: Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application. Int. J. Fatigue 30, 1448 (2008).CrossRefGoogle Scholar
Chen, X. and Hui, S.: Ratcheting behavior of PTFE under cyclic compression. Polym. Test. 24, 829 (2005).CrossRefGoogle Scholar
Sills, S. and Overney, R.M.: Probing macromolecular dynamics and the influence of finite size effects. In Applied Scanning Probe Methods III. NanoScience and Technology, Bhushan, B. and Fuchs, H., eds. (Springer, Berlin, Heidelberg, 2006); pp. 83130.CrossRefGoogle Scholar
Nguyen, S.T.T.: Caractérisation expérimentale et modélisation thermo-mécanique de l’accommodation cyclique du polyéthylène. Ph.D. thesis, ISAE-ENSMA Poitiers, 2013. https://tel.archives-ouvertes.fr/tel-00946058/file/These-NGUYEN-2013-BIS.pdf.Google Scholar
Supplementary material: File

Smerdova et al. supplementary material

Figures S1-S3

Download Smerdova et al. supplementary material(File)
File 946.9 KB