Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:54:44.929Z Has data issue: false hasContentIssue false

Crystallographic changes in (CaxSr1−x)n+1 TinO3n+1 layer perovskites: XPS and XAES investigations

Published online by Cambridge University Press:  31 January 2011

S. Myhra*
Affiliation:
AEA Industrial Technology, Harwell Laboratory, Didcot, Oxfordshire, OX11 ORA, United Kingdom
J.C. Rivière
Affiliation:
AEA Industrial Technology, Harwell Laboratory, Didcot, Oxfordshire, OX11 ORA, United Kingdom
K. Hawkins
Affiliation:
Electron Microscope Centre, Queensland University, St. Lucia, Queensland, 4067, Australia
T.J. White
Affiliation:
Electron Microscope Centre, Queensland University, St. Lucia, Queensland, 4067, Australia
*
a)Permanent address: Division of Science and Technology, Griffith University, Nathan, Queensland 4111, Australia.
Get access

Abstract

Layered perovskites (Ruddlesden–Popper phases), (CaxSr1−x)n+1 TinO3n+1 with n = 3, ∞ and x ranging from 0 to 1, have been investigated by XPS and XAES. The structural transitions, identified in other studies, have been correlated with changes in the chemical environments of the constituent species. In particular, the tetragonal to orthorhombic transition at x = 0.65 ± 0.1 appears to generate nonequivalent cation environments for the alkaline earth species in (Ca, Sr)O12 coordination. Other binding and kinetic energy shifts can be correlated with changes in and distortions of unit cell volumes.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ruddlesden, S. N. and Popper, P., Acta Cryst. 11, 54 (1958).CrossRefGoogle Scholar
2.Smyth, D. M., in Ceramic Superconductors II, Research Update 1988, edited by Yan, M. F. (Am. Ceram. Soc, Westerville, OH, 1988), pp. 112.Google Scholar
3.Yvon, K. and Francois, M., Z. Phys. B, 76, 413 (1989).CrossRefGoogle Scholar
4.Hawkins, K. D. and White, T. J., Philos. Trans. R. Soc, London (1991, in press).Google Scholar
5.Elcombe, M. M., Kisi, E. H., Hawkins, K. D., White, T. J., and Goodman, P., Acta Crystallogr. B47, 305 (1991).CrossRefGoogle Scholar
6.Graves, P. R., Myhra, S., Hawkins, K. D., and White, T. J., Physica C (1991, in press).Google Scholar
7.Myhra, S., Bishop, H. E., and Rivière, J. C., Surf. Technol. 19, 161 (1983).CrossRefGoogle Scholar
8.Myhra, S., White, T. J., Kesson, S. E., and Rivière, J. C., Am. Mineralogist 73, 161 (1988).Google Scholar
9.Bolwin, K., Witzel, S., Neumann, M., Chorkendorff, I., and Tougaard, S., Fresenius Z. Anal. Chem. 329, 152 (1987).CrossRefGoogle Scholar
10.Megaw, H. D., Crystal Structures: A Working Approach (W. B. Saunders Co., London, 1973).Google Scholar
11.Sasaki, S., Prewitt, C. T., Bass, J. D., and Schulze, W. A., Acta Cryst. C. 43, 1668 (1987).CrossRefGoogle Scholar
12.Turner, P. S., Jones, C. F., Myhra, S., Neall, F. B., Pham, D. K., and Smart, R. St. C., in Surfaces and Interfaces of Ceramic Materials, edited by Dufour, L-C., Monty, C., and Petit-Ervas, G. (Kluwer Academic Publ., 1989), pp. 663690.CrossRefGoogle Scholar
13.Pham, D. K., Ru-Peng, Z., Fielding, P. E., Myhra, S., and Turner, P. S., J. Mater. Res. 6, 1148 (1991).CrossRefGoogle Scholar
14.Lindberg, P. A. P., Shen, Z. X., Spicer, W. E., and Lindau, I., Surf. Sci. Rep. 11, 1 (1990).CrossRefGoogle Scholar
15.Ronay, M. and Newns, D. M., Phys. Rev. B 39, 817 (1989).CrossRefGoogle Scholar