Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T10:58:25.113Z Has data issue: false hasContentIssue false

Crystallization and nanoindentation behavior of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy

Published online by Cambridge University Press:  31 January 2011

J. G. Wang*
Affiliation:
Department of Chemical and Biochemical Engineering and Materials Science, University of California, Irvine, California 92697
B. W. Choi
Affiliation:
Chemistry and Materials Science, Lawrence Livermore National Laboratory, P.O. Box 808, L-350, Livermore, California 94551–9900
T. G. Nieh
Affiliation:
Chemistry and Materials Science, Lawrence Livermore National Laboratory, P.O. Box 808, L-350, Livermore, California 94551–9900
C. T. Liu
Affiliation:
Metals and Ceramics Division, P.O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6376
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The crystallization and nanoindentation behavior of a Zr–10Al–5Ti–17.9Cu–14.6Ni (at.%) bulk amorphous alloy (BAA) were studied. Resulting from the kinetic nature of phase transformation in multicomponent alloys, the crystallization path is complex. Despite the complexity of different crystallization paths, the main final crystallized product in the Zr-based BAA is Zr2Cu. Young's modulus and hardness of the BAA were found to increase with an increase in annealing temperature. The observed mechanical properties were correlated with the microstructure of the material. Also, in the present paper, both the observed crystallization and nanoindentation behavior are compared with existing data. Zr-based BAAs exhibit a ratio of hardness to Young's modulus (H/E ratio) of about 1/10, suggesting the interatomic bonding in the alloys is close to being covalent.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Mater. Trans., JIM 36, 866 (1995).CrossRefGoogle Scholar
2.Johnson, W.L., Mater. Sci. Forum 225–227, 35 (1996).CrossRefGoogle Scholar
3.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans., JIM 31, 177 (1990).CrossRefGoogle Scholar
4.Inoue, A., Nakamura, T., Nishiyama, N., and Masumoto, T., Mater. Trans., JIM 33, 937 (1992).CrossRefGoogle Scholar
5.Zhang, T., Inoue, A., and Masumoto, T., Mater. Trans., JIM 32, 1005 (1991).CrossRefGoogle Scholar
6.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
7.Inoue, A., Shibata, T., and Zhang, T., Mater. Trans., JIM 36, 1420 (1995).CrossRefGoogle Scholar
8.Zhang, T. and Inoue, A., Mater. Trans., JIM 39, 857 (1998).CrossRefGoogle Scholar
9.Inoue, A. and Gook, J.S., Mater. Trans., JIM 36, 1180 (1995).CrossRefGoogle Scholar
10.Inoue, A., Sci. Rpt. RITU, A42, 1 (1996).Google Scholar
11.Lin, X.H., Johnson, W.L., and Rhim, W.K., Mater. Trans., JIM 38, 473 (1997).CrossRefGoogle Scholar
12.Liu, C.T., et al., Metall. Mater. Trans. A, 29A, 1811 (1998).CrossRefGoogle Scholar
13.Nieh, T.G., Mukai, T., Liu, C.T., and Wadsworth, J., Scr. Mater. 40, 1021 (1999).CrossRefGoogle Scholar
14.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
15.Busch, R., Kim, Y.J., and Johnson, W.L., J. Appl. Phys. 77, 4039 (1995).CrossRefGoogle Scholar
16.Inoue, A., Negishi, T., Kimura, H.M., Zhang, T., and Yavari, A.R., Mater. Trans., JIM 39, 318 (1998).CrossRefGoogle Scholar
17.Lucas, B.N., Oliver, W.C., Pharr, G.M., and Loubet, J-L., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1996) pp. 233.Google Scholar
18.Inoue, A., Zhang, T., and Kim, Y.H., Mater. Trans., JIM 38, 749 (1997).CrossRefGoogle Scholar
19.Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M., Mater. Trans., JIM 39, 623 (1998).CrossRefGoogle Scholar
20.Fecht, H.J., Philos. Mag. B 76, 495 (1997).CrossRefGoogle Scholar
21.Spriano, S., Antonione, C., Doglione, R., Battezzati, L., Crdoso, S., Soares, J.C., and da Silva, M.F., Philos. Mag. B 76, 529 (1997).CrossRefGoogle Scholar
22.Fan, C. and Inoue, A., Mater. Trans., JIM 38, 1040 (1997).CrossRefGoogle Scholar
23.Xing, L.Q., Eckert, J., Loser, W., and Schultz, L., Appl. Phys. Lett. 73, 2110 (1998).CrossRefGoogle Scholar
24.Bruck, H.A., Christman, T., Rosakis, A.J., and Johnson, W.L., Scr. Metall. Mater. 30, 429 (1994).CrossRefGoogle Scholar
25.Conner, R.D., Rosakis, A.J., Johnson, W.L., and Owen, D.M., Scr. Mater. 37, 1373 (1997).CrossRefGoogle Scholar
26.Kato, H. and Inoue, A., Mater. Trans. JIM 38, 793 (1997).CrossRefGoogle Scholar
27.Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T., Appl. Phys. Lett. 67, 2008 (1995).CrossRefGoogle Scholar
28.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 36, 391 (1995).CrossRefGoogle Scholar
29.Chou, T.C., Nieh, T.G., McAdams, S.D., and Pharr, G.M., Scr. Metall. Mater. 25, 2203 (1991).CrossRefGoogle Scholar
30.Kimura, H. and Masumoto, T., in Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworths, London, United Kingdom, 1983), p. 187.CrossRefGoogle Scholar
31.Whang, S.H., Polk, D.E., and Giessen, B.C., in Proceedings of the Fourth International Conference on Rapidly Quenched Metals, edited by Masumoto, T. and Suzuki, K. (Japan Institute of Metals, 1982, 1981), p. 1365.Google Scholar
32.Gilman, J.J., in The Science of Hardness Testing and Its Research Applications, edited by Westbrook, and Conrad, (American Society for Metals, Metals Park, OH, 1973), p. 51.Google Scholar
33.Gilman, J.J., J. Appl. Phys. 46, 1435 (1975).CrossRefGoogle Scholar