Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T18:34:35.573Z Has data issue: false hasContentIssue false

Crystal structure and optical properties of erbium- and neodymium-doped zirconia nanoparticles

Published online by Cambridge University Press:  31 January 2011

Morgana M. Trexler*
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723
Dajie Zhang
Affiliation:
The Johns Hopkins University, Advanced Technology Laboratory, Baltimore, Maryland 20723
Lisa Kelly
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723; and University of Maryland, Baltimore, Maryland 21201
Jennifer Sample
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report the synthesis, characterization, and optical properties of high-temperature stable lanthanide-doped luminescent zirconia nanoparticles via a novel method using carbon black as template. Dopant concentrations were varied from 1 to 5% of Er3+ or Nd3+ and annealing temperatures were varied from 650 to 1100 °C. The effects of the dopant concentration on crystal structure and emission properties were evaluated using x-ray powder diffraction and fluorescence spectroscopy, respectively. The lanthanide cations were found to stabilize the tetragonal phase of zirconia over the monoclinic phase as dopant concentration was increased to 5%. Increasing the annealing temperature to 1100 °C had the opposite effect and was found to stabilize the monoclinic phase of zirconia. The luminescence intensity of the Nd-doped zirconia was enhanced by two orders of magnitude over the undoped or Er-doped zirconia. In all cases, the luminescence spectra revealed increasing intensity with increasing annealing temperature. Zirconia luminescence at near-infrared wavelengths is likely caused by oxygen vacancies. This work demonstrates that the spectral signatures of fluorescent zirconia nanoparticles can be modified with small lanthanide dopant concentration. These particles will have utility in fluorescent sensors and tags, as well as new in refractory materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., Requicha, A.A.G.Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229 (2003)CrossRefGoogle ScholarPubMed
2.Chander, H.Development of nanophosphors—A review. Mater. Sci. Eng., R 49, 113 (2005)CrossRefGoogle Scholar
3.Nyk, M., Kumar, R., Ohulchanskyy, T.Y., Bergey, E.J., Prasad, P.N.High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834 (2008)CrossRefGoogle ScholarPubMed
4.Krupa, J.C., Queffelec, M.UV and VUV optical excitations in wide band gap materials doped with rare earth ions: 4f-5d transitions. J. Alloys Compd. 250, 287 (1997)CrossRefGoogle Scholar
5.Tissue, B.M.Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater. 10, 2837 (1998)CrossRefGoogle Scholar
6.Denning, R.New optics—New materials. J. Mater. Chem. 11, 19 (2001)CrossRefGoogle Scholar
7.Tissue, B.M.Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater. 10, 2837 (1998)CrossRefGoogle Scholar
8.Veith, M.New synthetic routes to nano-composites with ceramic particles, using lanthanide compounds. J. Sol-Gel Sci. Technol. 46, 291 (2008)CrossRefGoogle Scholar
9.Boyer, J-C., Cuccia, L.A., Capobianco, J.A.Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 7, 847 (2007)CrossRefGoogle ScholarPubMed
10.Chen, D., Wang, Y., Yu, N., Huang, P., Weng, F.Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission. J. Solid State Chem. 181, 2763 (2008)CrossRefGoogle Scholar
11.Jokanovic, V., Dramicanin, M.D., Andric, Z., Jokanovic, B., Nedic, Z., Spasic, A.M.Luminescence properties of SiO2:Eu3+ nanopowders: Multi-step nano-designing. J. Alloys Compd. 453, 253 (2008)CrossRefGoogle Scholar
12.Moon, B.K., Kwon, I.M., Jeong, J.H., Kim, C-S., Yi, S-S., Kim, P.S., Choi, H., Kim, J.H.Synthesis and luminescence characteristics of Eu3+-doped ZrO2 nanoparticles. J. Lumin. 122–123, 855 (2007)CrossRefGoogle Scholar
13.Matsuura, D., Ikeuchi, T., Soga, K.Upconversion luminescence of colloidal solution of Y2O3 nano-particles doped with trivalent rare-earth ions. J. Lumin. 128, 1267 (2008)CrossRefGoogle Scholar
14.Lu, C-H., Huang, C-H., Cheng, B-M.Synthesis and luminescence properties of microemulsion-derived Y3Al5O12: Eu3+ phosphors. J. Alloys Compd. 473, 376 (2009)CrossRefGoogle Scholar
15.Chen, L., Liu, Y., Li, Y.Preparation and characterization of ZrO2:Eu3+ phosphors. J. Alloys Compd. 381, 266 (2004)CrossRefGoogle Scholar
16.Harrison, H.D.E., McLamed, N.T., Subbarao, E.C.A new family of self-activated phosphors. J. Electrochem. Soc. 110, 23 (1963)CrossRefGoogle Scholar
17.Reisfeld, R., Zelner, M., Patra, A.Fluorescence study of zirconia films doped by Eu3+, Tb3+ and Sm3+ and their comparison with silica films. J. Alloys Compd. 300–301, 147 (2000)CrossRefGoogle Scholar
18.Gutzov, S., Lerch, M.Optical properties of europium containing zirconium oxynitrides. Opt. Mater. 24, 547 (2003)CrossRefGoogle Scholar
19.Patra, A.Effect of crystal structure and concentration on luminescence in Er3+:ZrO2 nanocrystals. Chem. Phys. Lett. 387, 35 (2004)CrossRefGoogle Scholar
20.Patra, A., Friend, C.S., Kapoor, R., Prasad, P.N.Upconversion in Er3+:ZrO2 nanocrystals. J. Phys. Chem. B 106, 1909 (2002)CrossRefGoogle Scholar
21.Van der Voort, D., Blasse, G.Luminescence of the europium(3+) ion in zirconium(4+) compounds. Chem. Mater. 3, 1041 (1991)CrossRefGoogle Scholar
22.Boulc'h, F., Djurado, E.Structural changes of rare-earth-doped, nanostructured zirconia solid solution. Solid State Ionics 157, 335 (2003)CrossRefGoogle Scholar
23.Li, P., Chen, I.W., Penner-Hahn, J.E.Effect of dopants on zirconia stabilization—An x-ray absorption study: II, Tetravalent dopants. J. Am. Ceram. Soc. 77, 1281 (1994)CrossRefGoogle Scholar
24.Ho, S.M.On the structural chemistry of zirconium oxide. Mater. Sci. Eng. 54, 23 (1982)CrossRefGoogle Scholar
25.Zhang, H., Fu, X., Niu, S., Xin, Q.Blue emission of ZrO2:Tm nanocrystals with different crystal structure under UV excitation. J. Non-Cryst. Solids 354, 1559 (2008)CrossRefGoogle Scholar
26.Eldridge, E.Erosion-indicating thermal barrier coatings using luminescent sublayers. J. Am. Ceram. Soc. 89, 3252 (2006)CrossRefGoogle Scholar
27.Gentleman, M.M., Clarke, D.R.Luminescence sensing of temperature in pyrochlore zirconate materials for thermal-barrier coatings. Surf. Coat. Technol. 200, 1264 (2005)CrossRefGoogle Scholar
28.Assefa, Z., Haire, R.G., Raison, P.E.Photoluminescence and Raman studies of Sm3+ and Nd3+ ions in zirconia matrices: Example of energy transfer and host-guest interactions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 89 (2004)CrossRefGoogle ScholarPubMed
29.Cabello, G., Lillo, L., Caro, C., Buono-Core, G.E., Chornik, B., Soto, M.A.Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium. J. Non-Cryst. Solids 354, 3919 (2008)CrossRefGoogle Scholar
30.Ronfard-Haret, J.C.Electrical and luminescent properties of ZnO:Bi,Er ceramics sintered at different temperatures. J. Lumin. 104, 103 (2003)CrossRefGoogle Scholar
31.Armelao, L., Bottaro, G., Pascolini, M., Sessolo, M., Tondello, E., Bettinelli, M., Speghini, A.Structure-luminescence correlations in Europium-doped sol-gel ZnO nanopowders. J. Phys. Chem. C 112, 4049 (2008)CrossRefGoogle Scholar
32.Djerad, S., Geiger, B., Schott, F.J.P., Kureti, S.Synthesis of nano-sized ZrO2 and its use as catalyst support in SCR. Catal. Commun. 10, 1103 (2009)CrossRefGoogle Scholar
33.Tahmasebpour, M., Babaluo, A.A., Aghjeh, M.K.R.Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method. J. Eur. Ceram. Soc. 28, 773 (2008)CrossRefGoogle Scholar
34.Wang, S., Li, X., Zhai, Y., Wang, K.Preparation of homodispersed nano zirconia. Powder Technol. 168, 53 (2006)CrossRefGoogle Scholar
35.Young, R.The Rietveld Method (International Union of Crystallography, Oxford Science Publications, Oxford 1993)CrossRefGoogle Scholar
36.Cong, Y., Li, B., Yue, S.M., Fan, D., Wang, X.J.Effect of oxygen vacancy on phase transition and photoluminescence properties of nanocrystalline zirconia synthesized by the one-pot reaction. J. Phys. Chem. C 113, 13974 (2009)CrossRefGoogle Scholar
37.Zheng-Gui, W., Ling-Dong, S., Chun-Sheng, L., Xiao-Cheng, J., Chun-Hua, Y., Ye, T., Xue-Ying, H., Xin, J.Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuum ultraviolet region. J. Appl. Phys. 93, 9783 (2003)Google Scholar
38.Moon, B.K., Jeong, J.H., Yi, S-s., Choi, S.E., Kim, P.S., Choi, H., Kim, J.H.Luminous properties of Tb3+ in the ZrO2 and TiO2 nanoparticles. J. Lumin. 122–123, 873 (2007)CrossRefGoogle Scholar
39.Xue, N., Fan, X., Wang, Z., Wang, M.Synthesis process and the luminescence properties of rare earth doped NaLa(WO4)2 nanoparticles. J. Phys. Chem. Solids 69, 1891 (2008)CrossRefGoogle Scholar
40.Wan, N., Xu, J., Lin, T., Zhang, X., Xu, L.Energy transfer and enhanced luminescence in metal oxide nanoparticle and rare earth codoped silica. Appl. Phys. Lett. 92, 201109 (2008)CrossRefGoogle Scholar
41.Zheng-Gui, W., Ling-Dong, S., Chun-Sheng, L., Xiao-Cheng, J., Chun-Hua, Y., Ye, T., Xue-Ying, H., Xin, J.Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuum ultraviolet region. J. Appl. Phys. 93, 9783 (2003)Google Scholar
42.De la Rosa-Cruz, E., Diaz-Torres, L.A., Rodriguez-Rojas, R.A., Meneses-Nava, M.A., Barbosa-Garcia, O., Salas, P.Luminescence and visible upconversion in nanocrystalline ZrO2:Er3+. Appl. Phys. Lett. 83, 4903 (2003)CrossRefGoogle Scholar
43.De Vicente, F.S., De Castro, A.C., De Souza, M.F., Li, M.S.Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation. Thin Solid Films 418, 222 (2002)CrossRefGoogle Scholar
44.Zhang, A.Y., Lu, M.K., Yang, Z.S., Zhou, G.J., Zhou, Y.Y.Systematic research on RE2Zr2O7 (RE = La, Nd, Eu and Y) nanocrystals: Preparation, structure and photoluminescence characterization. Solid State Sci. 10, 74 (2008)CrossRefGoogle Scholar
45.Shannon, R.D.Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
46.Zhang, C., Li, C., Yang, J., Cheng, Z., Hou, Z., Fan, Y., Lin, J.Tunable luminescence in monodisperse zirconia spheres. Langmuir 25, 7078 (2009)CrossRefGoogle ScholarPubMed
47.Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A., Gnade, B.E.Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996)CrossRefGoogle Scholar
48.Yang, P., Kai Lü, M., Feng Song, C., Wen Liu, S., Xu, D., Rong Yuan, D., Feng Cheng, X.Preparation and tunable photoluminescence characteristics of Ni2+:SrAl2O4. Opt. Mater. 24, 575 (2003)CrossRefGoogle Scholar
49.Zhang, W.F., Zhang, M.S., Yin, Z., Chen, Q.Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 70, 261 (2000)CrossRefGoogle Scholar
50.Zhang, A., , M., Wang, S., Zhou, G., Wang, S., Zhou, Y.Novel photoluminescence of SrZrO3 nanocrystals synthesized through a facile combustion method. J. Alloys Compd. 433, L7 (2007)CrossRefGoogle Scholar
51.Lim, M.A., Seok, S.I., Hong, S.I.Near infrared luminescence of Er ions in sol-gel ZnO/zirconium-oxo-alkylsiloxane nanocomposite films. Thin Solid Films 515, 2423 (2006)CrossRefGoogle Scholar
52.Huanrong, L., Peng, L., Yige, W., Li, Z., Jiangbo, Y., Hongjie, Z., Binyuan, L., Ulrich, S.Preparation and luminescence properties of hybrid titania immobilized with lanthanide complexes. J. Phys. Chem. C 113, 3945 (2009)Google Scholar
53.Lunstroot, K., Driesen, K., Nockemann, P., Van Hecke, K., Van Meervelt, L., Gorller-Walrand, C., Binnemans, K., Bellayer, S., Viau, L., Le Bideau, J., Vioux, A.Lanthanide-doped luminescent ionogels. Dalton Trans. 298 (2009)CrossRefGoogle ScholarPubMed
54.Pivin, J.C., Podhorodecki, A., Kudrawiec, R., Misiewicz, J.Study of neodymium photoluminescence and energy transfer in silicon-based gels. Opt. Mater. 27, 1467 (2005)CrossRefGoogle Scholar
55.Rolli, R., Gatterer, K., Wachtler, M., Bettinelli, M., Speghini, A., Ajo, D.Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57, 2009 (2001)CrossRefGoogle ScholarPubMed
56.Wong, W-K., Hou, A., Guo, J., He, H., Zhang, L., Wong, W-Y., Li, K-F., Cheah, K-W., Xue, F., Mak, T.C.W.Synthesis, structure and near-infrared luminescence of neutral 3d-4f bi-metallic monoporphyrinate complexes. J. Chem. Soc., Dalton Trans. 3092 (2001)CrossRefGoogle Scholar
57.Zambelli, M., Zancarli, S., Speghini, A., Bettinelli, M., Capobianco, J.A., Vetrone, F., Boyer, J.C.Optical spectroscopy of lanthanide ions in Nb2O5–TeO2 glassesProc. SPIE, 19th Congress of the International Commission for Optics: Optics for the Quality of Life Vol. 4829 edited by G.C. Righini and A. Consortini (The International Society for Optical Engineering, Firenze, Italy 2003)127–128Google Scholar
58.Wang, D., Li, Y., Yin, Q., Wang, M.Concentration quenching of Eu2+ in 4SrO7Al2O3:Eu2+ phosphor. J. Electrochem. Soc. 152, 15 (2005)CrossRefGoogle Scholar