Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T01:03:07.307Z Has data issue: false hasContentIssue false

Creep and toughness of cryomilled NiAl containing Cr

Published online by Cambridge University Press:  31 January 2011

J. Daniel Whittenberger
Affiliation:
NASA-Glenn Research Center, Cleveland, Ohio 44135
Beverly Aikin
Affiliation:
Case Western Reserve University at NASA-Glenn Research Center, Cleveland, Ohio 44135
Jon Salem
Affiliation:
NASA-Glenn Research Center, Cleveland, Ohio 44135
Get access

Abstract

NiAl–AlN + Cr composites were produced by blending cryomilled NiAl powder with approximately 10 vol% Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl–AlN + 10.5Cr, however, possessed a toughness twice that determined for the base NiAl–AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl–AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, C.T. and Kumar, K.S., JOM 45 (5), 38 (1993).CrossRefGoogle Scholar
2.Miracle, D.B., Acta Metall. Mater. 41, 649 (1993).CrossRefGoogle Scholar
3.Noebe, R.D., Bowman, R.R., and Nathal, M.V., Inter. Mater. Rev. 38, 193 (1993).CrossRefGoogle Scholar
4.Whittenberger, J.D.. J. Mater. Sci. 22, 394 (1987).CrossRefGoogle Scholar
5.Forbes, K.R., Glatzel, U., Darolia, R., and Nix, W.D., Met. Mat. Trans. A 27A, 1229 (1996).CrossRefGoogle Scholar
6.Whittenberger, J.D, Locci, I.E., Darolia, Ram, and Bowman, R., Mater. Sci. Eng. A. A268, 165 (1999).CrossRefGoogle Scholar
7.Whittenberger, J.D., Nathal, M.V., and Book, P.O., Scripta Metall. Mater. 28, 53 (1993).CrossRefGoogle Scholar
8.Noebe, R. and Walston, W.S., in Structural Intermetallics 1997, edited by Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R., and Yamaguchi, M. (TMS, Warrendale, PA, 1997), pp. 573584.Google Scholar
9.Darolia, R. and Walston, W.S., in Structural Intermetallics 1997, edited by Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Mircle, D.B., Wagner, R., and Yamaguchi, M. (TMS, Warrendale, PA, 1997), pp. 585594.Google Scholar
10.Whittenberger, J.D, Locci, I.E., Darolia, Ram and Bowman, R., Mater. Sci. Eng. A. A268. 165 (1999).CrossRefGoogle Scholar
11.Arzt, E. and Grahle, P., High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J.A., Baker, I., Hanada, S., Noebe, R.D., and Schwartz, D.S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), pp. 525536.Google Scholar
12.Arzt, E. and Grahle, P., Acta Mater. 46, 2717 (1998).CrossRefGoogle Scholar
13.Choo, H., Nash, P., and Dollar, M., Mater. Sc. Eng. A 239–240, 464 (1997).CrossRefGoogle Scholar
14.Whittenberger, J.D., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), pp. 819828.Google Scholar
15.Johnson, D.R., Chen, X.F., Oliver, B.F., Noebe, R.D, and Whittenberger, J.D., Intermetallics 3, 99 (1995).CrossRefGoogle Scholar
16.Cotton, J.D., Noebe, R.D., and Kaufman, M.J., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), pp. 513522.Google Scholar
17.Schietinger, B., Fortschritt-Berichte, VDI Reihe 5 Nr. 410. Düsseldorf, Germany, 1995.Google Scholar
18.Lane, S.M., Biner, S.B., and Buck, O., Mater. Sci. Eng. A246, 244 (1998).CrossRefGoogle Scholar
19.Aikin, B.J.M., Whittenberger, J.D., and Hebsur, M.G., in Mechanical Alloying for Structural Applications, edited by deBarbadillo, J.J., Froes, F.H., and Schwarz, R. (ASM International, Materials Park, OH, 1993), pp. 283290.Google Scholar
20.American Society for Testing Materials Annual Book of Standards, Test Method C1421–99 (ASTM, West Conshohocken, PA, 2000), Vol. 15.01.Google Scholar
21.American Society for Testing and Materials Annual Book of Standards, Test Method C 1259–94 (ASTM, West Conshohocken, PA, 2000), Vol. 15.01.Google Scholar
22.Salem, J.A., Ghosn, L.J., and Jenkins, M.G., Ceramic Engineering and Science Proceedings, 19, 587 (1998).CrossRefGoogle Scholar
23.Harmouche, M.R. and Wolfenden, A., J. Testing Evaluation 15, 101 (1987).CrossRefGoogle Scholar
24.Walter, J.L. and Cline, H. E., Metall. Trans. 1, 1221 (1970).CrossRefGoogle Scholar
25.Tian, W.H., Han, C.S., and Nemoto, M., Intermetallics 7, 59 (1999).CrossRefGoogle Scholar
26.Noebe, R.D., Bowman, R.R., and Nathal, M.V., in Physical Metallurgy and Processing of Intermetallic Compounds, edited by Stoloff, N.S. and Sikka, V.K. (Chapman and Hall, New York, 1996), pp. 212296.CrossRefGoogle Scholar
27.Gerlick, D., Dole, S.L., and Slack, G.A., J. Phys. Chem. Solids 47, 437 (1986).CrossRefGoogle Scholar
28.Armstrong, P.E. and Brown, H.L., Trans. AIME 230, 962 (1964).Google Scholar
29.Wolfenden, A., Miller, C.M., and Hebsur, M.G., J. Mater. Sci. Lett. 17, 1861 (1998).CrossRefGoogle Scholar
30.Hebsur, M.H., Whittenberger, J.D., and Garg, A., in Structural Intermetallics 1997, edited by Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Mircle, D.B., Wagner, R., and Yamaguchi, M. (TMS, Warrendale, PA, 1997), pp. 621630.Google Scholar
31.Stephens, J.R. and Klopp, W.D., J. Less Common Metals 27, 87 (1972).CrossRefGoogle Scholar
32.Raj, S. V. and Pharr, G. M., Mater. Sci. Eng. 81, 217 (1986).CrossRefGoogle Scholar