Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T04:26:10.011Z Has data issue: false hasContentIssue false

Coupling of magnetism and structural phase transitions by interfacial strain

Published online by Cambridge University Press:  18 September 2014

Thomas Saerbeck*
Affiliation:
Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, USA
Jose de la Venta
Affiliation:
Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
Siming Wang
Affiliation:
Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, USA; and Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, USA
Juan Gabriel Ramírez
Affiliation:
Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, USA
Mikhail Erekhinsky
Affiliation:
Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, USA
Ilya Valmianski
Affiliation:
Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, USA
Ivan K. Schuller
Affiliation:
Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Proximity effects and exchange coupling across interfaces of hybrid magnetic heterostructures present unique opportunities for functional material design. In this review, we present an overview of recent experiments on magnetic hybrid materials in which magnetism was controlled by proximity to an active material. In particular, we discuss interfacial strain coupling of ferromagnetic materials in contact with a material undergoing a structural deformation. Bilayers containing VO2 and V2O3 as active materials are shown to strongly affect the magnetization and coercivity of ferromagnetic materials due to stress anisotropy caused by a temperature-dependent structural displacement in the oxide. The possibilities of tuning the system by sample morphology and materials choice are discussed in detail. In addition, we highlight a length-scale competition between magnetic and structural domains which leads to a maximum change in the coercivity in a narrow temperature window of the vanadium oxide phase transition.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D. E., Chu, Y.H., Salahuddin, S., and Ramesh, R.: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).Google Scholar
Laukhin, V., Skumryev, V., Martí, X., Hrabovsky, D., Sánchez, F., García-Cuenca, M. V., Ferrater, C., Varela, M., Lüders, U., Bobo, J.F., and Fontcuberta, J.: Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).Google Scholar
Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthelemy, A., and Fert, A.: Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296 (2007).Google Scholar
Cherifi, R.O., Ivanovskaya, V., Phillips, L.C., Zobelli, A., Infante, I.C., Jacquet, E., Garcia, V., Fusil, S., Briddon, P.R., Guiblin, N., Mougin, A., Ünal, A.A., Kronast, F., Valencia, S., Dkhil, B., Barthélémy, A., and Bibes, M.: Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014).CrossRefGoogle ScholarPubMed
Kouvel, J.S. and Wilson, R.H.: Magnetization of iron‐nickel alloys under hydrostatic pressure. J. Appl. Phys. 32, 435 (1961).Google Scholar
Tatsumoto, E., Fujiwara, H., Tange, H., and Kato, Y.: Pressure dependence of the intrinsic magnetization of iron and nickel. Phys. Rev. 128, 2179 (1962).Google Scholar
Kouvel, J.S. and Hartelius, C.C.: Pressure dependence of the magnetization of cobalt. J. Appl. Phys. 35, 940 (1964).Google Scholar
Kirilyuk, A., Kimel, A.V., and Rasing, T.: Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731 (2010).Google Scholar
Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., and Ohtani, K.: Electric-field control of ferromagnetism. Nature 408, 944 (2000).Google Scholar
Vaz, C.A.F.: Electric field control of magnetism in multiferroic heterostructures. J. Phys.: Condens. Matter 24, 333201 (2012).Google Scholar
Chernyshov, A., Overby, M., Liu, X., Furdyna, J.K., Lyanda-Geller, Y., and Rokhinson, L.P.: Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656 (2009).Google Scholar
Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996).Google Scholar
Tsoi, M., Jansen, A.G.M., Bass, J., Chiang, W.C., Seck, M., Tsoi, V., and Wyder, P.: Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998).Google Scholar
Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996).CrossRefGoogle Scholar
Zutic, I., Fabian, J., and Das Sarma, S.: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).Google Scholar
Stamps, R.L.: Dynamic magnetic properties of ferroic films, multilayers, and patterned elements. Adv. Funct. Mater. 20, 2380 (2010).Google Scholar
Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).CrossRefGoogle ScholarPubMed
Ramesh, R. and Spaldin, N.A.: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).Google Scholar
Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Zaulychny, B.Y., Skorokhod, V.V., and Blinc, R.: Surface-induced piezomagnetic, piezoelectric, and linear magnetoelectric effects in nanosystems. Phys. Rev. B 82, 085408 (2010).Google Scholar
Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., and Triscone, J-M.: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).Google Scholar
Velev, J.P., Dowben, P.A., Tsymbal, E.Y., Jenkins, S.J., and Caruso, A. N.: Interface effects in spin-polarized metal/insulator layered structures. Surf. Sci. Rep. 63, 400 (2008).Google Scholar
Rondinelli, J.M. and Spaldin, N.A.: Structure and properties of functional oxide thin Films: Insights from electronic-structure calculations. Adv. Mater. 23, 3363 (2011).Google Scholar
Velev, J.P., Jaswal, S.S., and Tsymbal, E.Y.: Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. R. Soc., A 369, 3069 (2011).Google Scholar
Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989).Google Scholar
Prinz, G.A.: Magnetoelectronics. Science 282, 1660 (1998).Google Scholar
Nogués, J. and Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192, 203 (1999).CrossRefGoogle Scholar
Berkowitz, A.E. and Takano, K.: Exchange anisotropy – A review. J. Magn. Magn. Mater. 200, 552 (1999).Google Scholar
Stamps, R.L.: Mechanisms for exchange bias. J. Phys. D: Appl. Phys. 33, R247 (2000).Google Scholar
Kiwi, M.: Exchange bias theory. J. Magn. Magn. Mater. 234, 584 (2001).Google Scholar
Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J. S., and Baró, M.D.: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).Google Scholar
Hill, N.A.: Why are there so few magnetic ferroelectrics?. J. Phys. Chem. B 104, 6694 (2000).Google Scholar
Manfred, F.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).Google Scholar
Khomskii, D.I.: Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1 (2006).Google Scholar
Chiba, D., Yamanouchi, M., Matsukura, F., and Ohno, H.: Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943 (2003).Google Scholar
Rokhinson, L.P., Overby, M., Chernyshov, A., Lyanda-Geller, Y., Liu, X., and Furdyna, J.K.: Electrical control of ferromagnetic state. J. Magn. Magn. Mater. 324, 3379 (2012).Google Scholar
Chu, Y-H., Martin, L.W., Holcomb, M.B., and Ramesh, R.: Controlling magnetism with multiferroics. Mater. Today 10, 16 (2007).Google Scholar
Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., and Dynes, R.C.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756 (2010).Google Scholar
Skumryev, V., Laukhin, V., Fina, I., Martí, X., Sánchez, F., Gospodinov, M., and Fontcuberta, J.: Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).CrossRefGoogle ScholarPubMed
Borisov, P., Hochstrat, A., Chen, X., Kleemann, W., and Binek, C.: Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).Google Scholar
He, X., Wang, Y., Wu, N., Caruso, A.N., Vescovo, E., Belashchenko, K. D., Dowben, P.A., and Binek, C.: Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579 (2010).Google Scholar
Freeman, A.J. and Wu, R-Q.: Electronic structure theory of surface, interface and thin-film magnetism. J. Magn. Magn. Mater. 100, 497 (1991).Google Scholar
Hattox, T.M., Conklin, J.B. Jr., Slater, J.C., and Trickey, S.B.: Calculation of the magnetization and total energy of vanadium as a function of lattice parameter. J. Phys. Chem. Solids 34, 1627 (1973).Google Scholar
Chappert, C., Fert, A., and Dau, F.N.V.: The emergence of spin electronics in data storage. Nat. Mater. 6, 813 (2007).CrossRefGoogle ScholarPubMed
Kittel, C.: Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541 (1949).Google Scholar
Lee, E.W.: Magnetostriction and magnetomechanical effects. Rep. Prog. Phys. 18, 184 (1955).Google Scholar
Dagotto, E., Hotta, T., and Moreo, A.: Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1 (2001).Google Scholar
Millis, A.J.: Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147 (1998).Google Scholar
Dörr, K.: Ferromagnetic manganites: Spin-polarized conduction versus competing interactions. J. Phys. D: Appl. Phys. 39, R125 (2006).Google Scholar
Haghiri-Gosnet, A.M. and Renard, J.P.: CMR manganites: Physics, thin films and devices. J. Phys. D: Appl. Phys. 36, R127 (2003).Google Scholar
Thiele, C., Dörr, K., Bilani, O., Rödel, J., and Schultz, L.: Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Phys. Rev. B 75, 054408 (2007).Google Scholar
Srinivasan, G., Rasmussen, E.T., Levin, B.J., and Hayes, R.: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 (2002).Google Scholar
Lee, M.K., Nath, T.K., Eom, C.B., Smoak, M.C., and Tsui, F.: Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77, 3547 (2000).Google Scholar
Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., and Mathur, N.D.: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6, 348 (2007).Google Scholar
Brandlmaier, A., Geprägs, S., Weiler, M., Boger, A., Opel, M., Huebl, H., Bihler, C., Brandt, M.S., Botters, B., Grundler, D., Gross, R., and Goennenwein, S.T.B.: In situ manipulation of magnetic anisotropy in magnetite thin films. Phys. Rev. B 77, 104445 (2008).Google Scholar
Duan, C-G., Jaswal, S.S., and Tsymbal, E.Y.: Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).Google Scholar
Sahoo, S., Polisetty, S., Duan, C-G., Jaswal, S.S., Tsymbal, E.Y., and Binek, C.: Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys. Rev. B 76, 092108 (2007).Google Scholar
Weiler, M., Brandlmaier, A., Geprägs, S., Althammer, M., Opel, M., Bihler, C., Huebl, H., Brandt, M.S., Gross, R., and Goennenwein, S.T.B.: Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature. New J. Phys. 11, 013021 (2009).Google Scholar
Geprägs, S., Brandlmaier, A., Opel, M., Gross, R., and Goennenwein, S.T.B.: Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl. Phys. Lett. 96, 142509 (2010).Google Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004).CrossRefGoogle ScholarPubMed
Wu, H.P., Chai, G.Z., Zhou, T., Zhang, Z., Kitamura, T., and Zhou, H. M.: Adjustable magnetoelectric effect of self-assembled vertical multiferroic nanocomposite films by the in-plane misfit strain and ferromagnetic volume fraction. J. Appl. Phys. 115, 9 (2014).CrossRefGoogle Scholar
de la Venta, J., Wang, S., Ramirez, J.G., and Schuller, I.K.: Control of magnetism across metal to insulator transitions. Appl. Phys. Lett. 102, 122404 (2013).Google Scholar
de la Venta, J., Wang, S., Saerbeck, T., Ramírez, J.G., Valmianski, I., and Schuller, I.K.: Coercivity enhancement in V2O3/Ni bilayers driven by nanoscale phase coexistence. Appl. Phys. Lett. 104, 062410 (2014).Google Scholar
Imada, M., Fujimori, A., and Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).Google Scholar
Yethiraj, M.: Pure and doped vanadium sesquioxide: A brief experimental review. J. Solid State Chem. 88, 53 (1990).Google Scholar
Brockman, J., Samant, M.G., Roche, K.P., and Parkin, S.S.P.: Substrate-induced disorder in V2O3 thin films grown on annealed c-plane sapphire substrates. Appl. Phys. Lett. 101, 051606 (2012).Google Scholar
Mott, N.F.: Metal-insulator transition. Rev. Mod. Phys. 40, 677 (1968).Google Scholar
Mott, N.F.: Continuous and discontinuous metal-insulator transitions. Philos. Mag. Part B 37, 377 (1978).Google Scholar
Moon, R.M.: Antiferromagnetism in V2O3. Phys. Rev. Lett. 25, 527 (1970).Google Scholar
Bao, W., Broholm, C., Aeppli, G., Carter, S.A., Dai, P., Rosenbaum, T. F., Honig, J.M., Metcalf, P., and Trevino, S.F.: Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized fermi liquid, and metallic antiferromagnetic phases of the Mott system V2O3. Phys. Rev. B 58, 12727 (1998).Google Scholar
Griffiths, C.H. and Eastwood, H.K.: Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide. J. Appl. Phys. 45, 2201 (1974).Google Scholar
Andersson, G.: Studies on vanadium oxides. II. The crystal structure of vanadium oxide. Acta Chem. Scand. 10, 623 (1956).Google Scholar
Andersson, G.: Studies on vanadium oxides. Acta Chem. Scand. 8, 1599 (1954).Google Scholar
Cullity, B.D. and Graham, C.D.: Introduction to Magnetic Materials (John Wiley and Sons, Hoboken, New Jersey, 2009).Google Scholar
Viswanath, B., Ko, C., and Ramanathan, S.: Thermoelastic switching with controlled actuation in VO2 thin films. Scr. Mater. 64, 490 (2011).Google Scholar
Yang, T-H., Aggarwal, R., Gupta, A., Zhou, H., Narayan, R.J., and Narayan, J.: Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J. Appl. Phys. 107, 053514 (2010).Google Scholar
Zhao, Y., Hwan Lee, J., Zhu, Y., Nazari, M., Chen, C., Wang, H., Bernussi, A., Holtz, M., and Fan, Z.: Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J. Appl. Phys. 111, 053533 (2012).Google Scholar
Qazilbash, M.M., Tripathi, A., Schafgans, A.A., Kim, B-J., Kim, H-T., Cai, Z., Holt, M.V., Maser, J.M., Keilmann, F., Shpyrko, O. G., and Basov, D. N.: Nanoscale imaging of the electronic and structural transitions in vanadium dioxide. Phys. Rev. B 83, 165108 (2011).Google Scholar
McWhan, D.B. and Remeika, J.P.: Metal-insulator transition in (V(1-x)Crx)2O3. Phys. Rev. B 2, 3734 (1970).CrossRefGoogle Scholar
Dimitrov, D.V., Zhang, S., Xiao, J.Q., Hadjipanayis, G.C., and Prados, C.: Effect of exchange interactions at antiferromagnetic/ferromagnetic interfaces on exchange bias and coercivity. Phys. Rev. B 58, 12090 (1998).Google Scholar
Schulthess, T.C. and Butler, W.H.: Coupling mechanisms in exchange biased films (invited). J. Appl. Phys. 85, 5510 (1999).Google Scholar
Leighton, C., Nogués, J., Jönsson-Åkerman, B.J., and Schuller, I.K.: Coercivity enhancement in exchange biased systems driven by interfacial magnetic frustration. Phys. Rev. Lett. 84, 3466 (2000).Google Scholar
Sass, B., Buschhorn, S., Felsch, W., Schmitz, D., and Imperia, P.: Thin layers of Fe, Co and Ni on V2O3 (11-20) and V2O3(0001): A comparison of the interfacial magnetic interactions. J. Magn. Magn. Mater. 303, 167 (2006).Google Scholar
Fitzsimmons, M.R., Yashar, P., Leighton, C., Schuller, I.K., Nogues, J., Majkrzak, C.F., and Dura, J.A.: Asymmetric magnetization reversal in exchange-biased hysteresis loops. Phys. Rev. Lett. 84, 3986 (2000).Google Scholar
Radu, F., Etzkorn, M., Siebrecht, R., Schmitte, T., Westerholt, K., and Zabel, H.: Interfacial domain formation during magnetization reversal in exchange-biased CoO/Co bilayers. Phys. Rev. B 67, 134409 (2003).Google Scholar
Li, Z-P., Eisenmenger, J., Miller, C.W., and Schuller, I.K.: Anomalous spontaneous reversal in magnetic heterostructures. Phys. Rev. Lett. 96, 137201 (2006).Google Scholar
Paul, A., Schmidt, C., Paul, N., Ehresmann, A., Mattauch, S., and Böni, P.: Symmetric magnetization reversal in polycrystalline exchange coupled systems via simultaneous processes of coherent rotation and domain nucleation. Phys. Rev. B 86, 094420 (2012).Google Scholar
Manna, P.K. and Yusuf, S.M.: Two interface effects: Exchange bias and magnetic proximity. Phys. Rep. 535, 61 (2014).Google Scholar
Guénon, S., Scharinger, S., Siming, W., Ramírez, J.G., Koelle, D., Kleiner, R., and Ivan, K.S.: Electrical breakdown in a V2O3 device at the insulator-to-metal transition. Europhys. Lett. 101, 57003 (2013).Google Scholar
Sharoni, A., Ramírez, J.G., and Schuller, I.K.: Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions. Phys. Rev. Lett. 101, 026404 (2008).Google Scholar
Qazilbash, M.M., Brehm, M., Chae, B-G., Ho, P-C., Andreev, G.O., Kim, B-J., Yun, S.J., Balatsky, A.V., Maple, M.B., Keilmann, F., Kim, H-T., and Basov, D.N.: Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750 (2007).Google Scholar
NIST, OOMMF: See http://math.nist.gov/oommf for software code and description. (Page accessed March 2014).Google Scholar