Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T06:05:04.108Z Has data issue: false hasContentIssue false

Corrosion of nickel and nickel–phosphorous-coated AISI 430 in dry (Ar–3%H2) and humid hydrogen (Ar–3%H2–3%H2O) atmosphere

Published online by Cambridge University Press:  01 September 2020

Mark K. King Jr.
Affiliation:
Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama35294, USA
Manoj K. Mahapatra*
Affiliation:
Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama35294, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The corrosion behavior of uncoated, nickel (Ni) and nickel–phosphorous (Ni–P)-coated AISI 430 alloy was investigated in Ar–3%H2 and Ar–3%H2–3%H2O atmosphere at 800 °C for 100 h. Microstructure, chemical composition, and reaction products were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The corrosion extent of Ni–P-coated AISI 430 is higher than Ni-coated AISI 430. Oxidation promotes corrosion in the uncoated and coated alloy. The oxidation rate of Ni-coated alloy is the lowest in Ar–3%H2 but Ni–P-coated alloy in Ar–3%H2–3%H2O for initial 20 h. The oxidation rate of the Ni–P-coated sample is ~14 times higher in 20–100 h in Ar–3%H2–3%H2O. External growth of Cr2O3 is observed for Ni-coated alloy in Ar–3%H2 and for Ni–P-coated alloy in both the atmospheres. Inward growth of Cr2O3 by AISI 430 alloy consumption attributes to the lowest oxidation rate and the corrosion extent of Ni-coated sample in Ar–3%H2–3%H2O.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

References

Mahapatra, M.K. and Singh, P.: Fuel cells: energy conversion technology. In Future Energy, 2nd ed., Letcher, T.M., ed. (Elsevier, London 2013); p. 511.Google Scholar
Chen, X., Zhen, Y., Li, J., and Jiang, S.P.: Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+δ cathodes of solid oxide fuel cells. Int. J. Hydrogen Energy 35, 2477 (2010).CrossRefGoogle Scholar
Roehrens, D., Neumann, A., Beez, A., Vinke, I.C., de Haart, L.G.J., and Menzler, N.H.: Formation of chromium containing impurities in (La,Sr)MnO3 solid-oxide-fuel-cell cathodes under stack operating conditions and its effect on performance. Ceram. Int. 42, 9467 (2016).CrossRefGoogle Scholar
Saunders, S.R.J., Monteiro, M., and Rizzo, F.: The oxidation behavior of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Prog. Mater. Sci. 53, 775 (2008).CrossRefGoogle Scholar
Young, D.J.: High Temperature Oxidation and Corrosion of Metals, 2nd ed. (Elsevier, Oxford, 2016); pp. 549601.CrossRefGoogle Scholar
Shen, J., Zhou, L., and Li, T.: High-temperature oxidation of Fe–Cr alloys in wet oxygen. Oxid. Met. 48, 347 (1997).Google Scholar
Ehlers, J., Young, D.J., Smaardijk, E.J., Tyagi, A.K., Penkalla, H.J., Singheiser, L., and Quadakkers, W.J.: Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments. Corr. Sci. 48, 3428 (2006).CrossRefGoogle Scholar
Quadakkers, W.J., Ennis, P.J., Zurek, J., and Michalik, M.: Steam oxidation of ferritic steels – laboratory test kinetic data. Mater. High Temp. 22, 47 (2005).Google Scholar
Essuman, E., Meier, G.H., Żurek, J., Hänsel, M., and Quadakkers, W.J.: The effect of water vapor on selective oxidation of Fe–Cr alloys. Oxid. Met. 69, 143 (2008).CrossRefGoogle Scholar
Galerie, A., Henry, S., Wouters, Y., Mermoux, M., Petit, J.-P., and Antoni, L.: Mechanisms of chromia scale failure during the course of 15-18Cr ferritic stainless steel oxidation in water vapour. Mater. High Temp. 22, 105 (2005).CrossRefGoogle Scholar
Garcia-Vargas, M.J., Lelait, L., Kolarik, V., Fietzek, H., and Juez-Lorenzo, M.M.: Oxidation of potential SOFC interconnect materials, Crofer 22 APU and Avesta 353 MA, in dry and humid air studied in situ by X-ray diffraction. Mater. High Temp. 22, 245 (2005).CrossRefGoogle Scholar
Brylewski, T., Nanko, M., Maruyama, T., and Przybylski, K.: Application of Fe–16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics 143, 131 (2001).CrossRefGoogle Scholar
Kurokawa, H., Kawamura, K., and Maruyama, T.: Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient. Solid State Ionics 168, 13 (2004).CrossRefGoogle Scholar
Fontana, S., Chevalier, S., and Caboche, G.: Metallic interconnects for solid oxide fuel cell: Effect of water vapour on oxidation resistance of differently coated alloys. J. Power Sources 193, 136 (2009).CrossRefGoogle Scholar
Sachitanand, R., Sattari, M., Svensson, J.-E., and Froitzheim, J.: Interconnects in fuel side environments. Fuel Cells 16, 32 (2016).CrossRefGoogle Scholar
Ardigo, M.R., Popa, I., Chevalier, S., Girardon, P., Perry, F., Laucournet, R., Brevet, A., and Desgranges, C.: Effect of coatings on long term behaviour of a commercial stainless steel for solid oxide electrolyser cell interconnect application in H2/H2O atmosphere. Int. J. Hydrogen Energy 39, 21673 (2014).CrossRefGoogle Scholar
Hu, Y.-Z., Li, C.-X., Zhang, S.-L., Yang, G.-J., Luo, X.-T., and Li, C.-J.: The microstructure stability of atmospheric plasma-sprayed MnCo2O4 coating under dual-atmosphere (H2/air) exposure. J. Therm. Spray Technol. 25, 301 (2016).CrossRefGoogle Scholar
Fu, C., Sun, K., Chen, X., Zhang, N., and Zhou, D.: Effects of the nickel-coated ferritic stainless steel for solid oxide fuel cells interconnects. Corr. Sci. 50, 1926 (2008).CrossRefGoogle Scholar
Leonard, M.E., Amendola, R., Gannon, P.E., Shong, W.-J., and Liu, C.-K.: High-temperature (800° C) dual atmosphere corrosion of electroless nickel-plated ferritic stainless steel. Int. J. Hydrogen Energy 39, 1574 (2014).CrossRefGoogle Scholar
Glazoff, M.V., Rashkeev, S.N., and Herring, J.S.: Controlling chromium vaporization from interconnects with nickel coatings in solid oxide devices. Int. J. Hydrogen Energy 39, 15301 (2014).CrossRefGoogle Scholar
Shong, W.-J., Liu, C.-K., and Yang, P.: Effects of electroless nickel plating on 441 stainless steel as SOFC interconnect. Mater. Chem. Phys 134, 670 (2012).CrossRefGoogle Scholar
King, M. and Mahapatra, M.K.: Oxidation of nickel-coated AISI 430 alloy: effect of pre-oxidation and Fe0.5Ni0.5 interdiffusion layer. Oxid. Met. https://doi.org/10.1007/s11085-020-09996-1 (2020).CrossRefGoogle Scholar
King, M. K. and Mahapatra, M. K.: Protective coatings for SOFC metallic interconnects, in Ceramic Engineering and Science Proceedings, edited by J. Salem, D. Koch, P. Mechnich, M. Kusnezoff, N. Bansal, J. LaSalvia, P. Balaya, Z. Fu, and T. Ohji (15th Int. Symp. 39, on Solid Oxide Fuel Cells (SOFC): Materials, Science, and Technology Daytona Beach, FL, 2018); p. 149.Google Scholar
King, M.K., and Mahapatra, M.K.: Oxidation of electroless Ni–P coated AISI 430 alloy and effect of pre-reduction. SN Appl. Sci. 2, 716 (2020).CrossRefGoogle Scholar
Brady, M.P., Fayek, M., Keiser, J.R., Meyer, H.M., More, K.L., Anovitz, L.M., Wesolowski, D.J., and Cole, D.R.: Wet oxidation of stainless steels: New insights into hydrogen ingress. Corr. Sci. 53, 1633 (2011).CrossRefGoogle Scholar
Chialvo, A.A., Brady, M.P., Keiser, J.R., and Cole, D.R.: Modeling the effect of water vapor on the interfacial behavior of high-temperature air in contact with Fe20Cr surfaces. Scr. Mater. 64, 1027 (2011).CrossRefGoogle Scholar
Latu-Romain, L., Parsa, Y., Mathieu, S., Vilasi, M., Galerie, A., and Wouters, Y.: Towards the growth of stoichiometric chromia on pure chromium by the control of temperature and oxygen partial pressure. Corr. Sci. 126, 238 (2017).CrossRefGoogle Scholar
Lobnig, R.E.: Diffusion of cations in chromia layers grown on iron-base alloys. Oxid. Metals 37, 81 (1992).CrossRefGoogle Scholar
Tijpfer, J., Aggarwal, S., and Dieckmann, R.: Point defects and cation tracer diffusion in (CrxFe1-x)3-δO4 spinels. Solid State Ionics 81, 251 (1995).Google Scholar
Kurokawa, H., Oyama, Y., Kawamura, K., and Maruyama, T.: Hydrogen permeation through Fe-16Cr alloy interconnect in atmosphere simulating SOFC at 1073K. J. Electrochem. Soc. 151, A1264 (2004).CrossRefGoogle Scholar
Hirano, K., Cohen, M., and Averbach, B.L.: Diffusion of nickel into iron. Acta Metall. 9, 440 (1961).CrossRefGoogle Scholar
Heuer, C.F.: Diffusion of iron and cobalt in nickel single crystals. PhD thesis, University of Science and Technology, Missouri, 1969.Google Scholar
Murarka, S.P., Anand, M.S., and Agarwala, R.P.: Diffusion of chromium in nickel. J. Appl. Phys. 35, 1339 (1964).CrossRefGoogle Scholar
Martin, M.L., Somerday, B.P., Ritchie, R.O., Sofronis, P., and Robertson, I.M.: Hydrogen-induced intergranular failure in nickel revisited. Acta Mater. 60, 2739 (2012).CrossRefGoogle Scholar
Park, E., Hüning, B., and Spiegel, M.: Evolution of near-surface concentration profiles of Cr during annealing of Fe–15Cr polycrystalline alloy. Appl. Surf. Sci. 249, 127 (2005).CrossRefGoogle Scholar
Tucker, J.D., Najafabadi, R., Allen, T.R., and Morgan, D.: Ab initio-based diffusion theory and tracer diffusion in Ni–Cr and Ni–Fe alloys. J. Nucl. Mater. 405, 216 (2010).CrossRefGoogle Scholar
Ebisuzaki, Y., Kass, W.J., and O'Keeffe, M.: Diffusion and solubility of hydrogen in single crystals of nickel and nickel-vanadium alloy. J. Chem. Phys. 46, 1378 (1967).CrossRefGoogle Scholar
Park, J.W. and Altstetter, C.J.: The diffusion and solubility of oxygen in solid nickel. Metall. Trans. A 18A, 43 (1987).CrossRefGoogle Scholar
Perusin, S., Monceau, D., and Andrieu, E.: Investigations on the diffusion of oxygen in nickel at 1000°C by SIMS analysis. J. Electrochem. Soc. 152, E390 (2005).CrossRefGoogle Scholar
Connetable, D., David, M., Prillieux, A., Young, D., and Monceau, D.: Impact of the clusterization on the solubility of oxygen and vacancy concentration in nickel: A multi-scale approach. J. Alloys Compd. 708, 1063 (2017).CrossRefGoogle Scholar
Pfeiffer, H., Tancret, F., and Brousse, T.: Synthesis, characterization and thermal stability of Ni3P coatings on nickel. Mater. Chem. Phys. 92, 534 (2005).CrossRefGoogle Scholar
Yan, N., Fu, X.-Z., Luo, J.-L., Chuang, K.T., and Sanger, A.R.: Ni-P coated Ni foam as coking resistant current collector for solid oxide fuel cells fed by syngas. J. Power Sources 198, 164 (2012).CrossRefGoogle Scholar
Ross, C.A., Wu, D.T., Goldma, L.M., and Spaepen, F.: Measurements of interdiffusion in electrodeposited nickel-phosphorus multilayers. J. Appl. Phys. 72, 2773 (1992).CrossRefGoogle Scholar
Ke, J.-H., Young, G.A., and Tucker, J.D.: Ab initio study of phosphorus effect on vacancy-mediated process in nickel alloys: An insight into Ni2Cr ordering. Acta Mater. 172, 30 (2019).CrossRefGoogle Scholar
Supplementary material: File

King and Mahapatra supplementary material

Tables S1-S4

Download King and Mahapatra supplementary material(File)
File 22.1 KB
Supplementary material: File

King and Mahapatra supplementary material

Figures S1-S7

Download King and Mahapatra supplementary material(File)
File 3.1 MB