Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T12:18:55.571Z Has data issue: false hasContentIssue false

Correlation between microstructural evolution during high-pressure torsion and isothermal heat treatment of amorphous Al85Gd8Ni5Co2 alloy

Published online by Cambridge University Press:  31 January 2011

Ádám Révész*
Affiliation:
Department of Materials Physics, Eötvös University, Budapest, H-1518 Hungary
Erhard Schafler
Affiliation:
Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, A-1090 Vienna, Austria
Péter J. Szabó
Affiliation:
Department of Materials Science and Engineering, University of Technology and Economy, Budapest, H-1111 Hungary
János L. Lábár
Affiliation:
Research Institute for Technical Physics and Material Science, Hungarian Academy of Sciences, Budapest, H-1121 Hungary
Lajos K. Varga
Affiliation:
Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest, H-1525 Hungary
Zsolt Kovács
Affiliation:
Department of Materials Physics, Eötvös University, Budapest, H-1518 Hungary
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Al85Gd8Ni5Co2 metallic glass was subjected to partial devitrification by high-pressure torsion, continuous heat treatment, and isothermal annealing. The fully amorphous alloy exhibits a well-defined transition in its first devitrification product during isothermal heat treatments from τm + α-Al phase mixture to primary α-Al by increasing the annealing temperature above 555 K. This thermal sensitivity predestinates the composition to identify the controversial thermal contribution of the plastic deformation in metallic glasses. Thermal stability and structure of the partially devitrified samples were systematically analyzed and compared by calorimetry, x-ray diffraction, and electron microscopy. It seems that the effect of severe deformation cannot be singled out by a simple isothermal heat treatment; i.e., high-pressure torsion acts as a spectrum of heat treatments performed at different annealing temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A.Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998)CrossRefGoogle Scholar
2.Zhong, Z.C., Jiang, X.Y., Greer, A.L.Microstructure and hardening of Al-based nanophase composites. Mater. Sci. Eng., A 226–228, 531 (1997)CrossRefGoogle Scholar
3.Greer, A.L.From metallic glasses to nanocrystalline solidsProceedings of the 22nd Risø International Symposium on Materials Science: Science of Metastable and Nanocrystalline Alloys (Riso National Laboratory, Roskilde, Denmark 2001)461Google Scholar
4.Zhu, A., Poon, S.J., Shiflet, G.J.On glass formability of Al–Gd–Ni (Fe). Scr. Mater. 50, 1451 (2004)CrossRefGoogle Scholar
5.Hsieh, H.Y., Toby, B.H., Egami, T., He, Y., Poon, S.J., Shiflet, G.J.Atomic structure of Al90FexCe10−x. J. Mater. Res. 5, 2807 (1990)CrossRefGoogle Scholar
6.Yavari, A.R., Drbohlav, O.Mechanisms of nanocrystallization of Fe- and Al-based amorphous precursors. Mater. Sci. Forum 225–227, 295 (1996)CrossRefGoogle Scholar
7.Mazzone, G., Montone, A., Vittori Antisari, M.Effect of plastic flow on the kinetics of amorphous phase growth by solid state reaction in the Ni–Zr system. Phys. Rev. Lett. 65, 2019 (1990)CrossRefGoogle ScholarPubMed
8.Trudeau, M.L., Schulz, R., Dussault, D., Van Neste, A.Structural changes during high-energy ball milling of iron-based amorphous alloys: Is high-energy ball milling equivalent to a thermal process? Phys. Rev. Lett. 64, 99 (1990)CrossRefGoogle ScholarPubMed
9.Ogura, A., Tarumi, R., Shimojo, M., Takashima, K., Higo, Y.Control of nanocrystalline orientation using the application of a stress field in an amorphous alloy. Appl. Phys. Lett. 79, 1042 (2001)CrossRefGoogle Scholar
10.Fan, G.J., Quan, M.X., Hu, Z.Q., Löser, W., Eckert, J.Deformation-induced microstructural changes in Fe40Ni40P14B6 metallic glass. J. Mater. Res. 14, 3765 (1999)CrossRefGoogle Scholar
11.Gu, X.J., Ye, F., Zhou, F., Lu, K.Pressure effect on crystallization of mechanically alloyed amorphous Al85Fe15 alloy. Mater. Sci. Eng., A 278, 61 (2000)CrossRefGoogle Scholar
12.Jiang, J.Z., Zhou, T.J., Rasmussen, H., Kuhn, U., Eckert, J., Lathe, C.Crystallization in Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass under pressure. Appl. Phys. Lett. 77, 3553 (2000)CrossRefGoogle Scholar
13.Lee, S.W., Huh, M.Y., Chae, S.W., Lee, J.C.Mechanism of the deformation-induced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scr. Mater. 54, 1439 (2006)CrossRefGoogle Scholar
14.He, D., Zhao, Q., Wang, W.H., Che, R.Z., Liu, J., Luo, X.J., Wang, W.K.Pressure-induced crystallization in a bulk amorphous Zr-based alloy. J. Non-Cryst. Solids 297, 84 (2002)CrossRefGoogle Scholar
15.Zhuang, Y.X., Jiang, J.Z., Zhou, T.J., Rasmussen, H., Gerward, L., Mezouar, M., Crichton, W., Inoue, A.Pressure effects on Al89La6Ni5 amorphous alloy crystallization. Appl. Phys. Lett. 77, 4133 (2000)CrossRefGoogle Scholar
16.Csontos, A.A., Shiflet, G.J.Formation and chemistry of nanocrystalline phases formed during deformation in aluminum-rich metallic glasses. Nanostruct. Mater. 9, 281 (1997)CrossRefGoogle Scholar
17.Jiang, W.H., Atzmon, M.Mechanically-assisted nanocrystallization and defects in amorphous alloys: A high-resolution transmission-electron-microscopy study. Scr. Mater. 54, 333 (2006)CrossRefGoogle Scholar
18.Demetriou, M.D., Johnson, W.L.Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1. Acta Mater. 52, 3403 (2004)CrossRefGoogle Scholar
19.Paik, J.H., Botta, W.J., Yavari, A.R.Al-based nanostructures obtained from amorphous precursors. Mater. Sci. Forum 225, 305 (1996)CrossRefGoogle Scholar
20.Valiev, R.Z., Ishlamgaliev, R.K., Alexandrov, I.V.Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000)CrossRefGoogle Scholar
21.Kovács, Zs., Henits, P., Zhylaev, A.P., Révész, Á.Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scr. Mater. 54, 1733 (2006)CrossRefGoogle Scholar
22.Kovács, Zs., Henits, P., Zhylaev, A.P., Chinch, N.Q., Révész, Á.Microstructural characterization of the crystallization sequence of a severe plastically deformed Al–Ce–Ni–Co amorphous alloy. Mater. Sci. Forum 519–521, 1329 (2006)CrossRefGoogle Scholar
23.Sort, J., Ile, D.C., Zhilyaev, A.P., Concustell, A., Czeppe, T., Stoica, M., Suriñach, S., Eckert, J., Baró, M.D.Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion. Scr. Mater. 50, 1221 (2004)CrossRefGoogle Scholar
24.Boucharat, N., Hebert, R., Rösner, H., Valiev, R., Wilde, G.Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion. Scr. Mater. 53, 823 (2005)CrossRefGoogle Scholar
25.Czeppe, T., Korznikova, G.F., Ochin, P., Korznikov, A.V., Chinh, N.Q., Sypień, A.Properties of Ni-based amorphous ribbons consolidated by high pressure torsion. J. Phys. Conf. Ser. 98, 062035 (2008)CrossRefGoogle Scholar
26.He, Y., Poon, J., Shiflet, G.J.Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988)CrossRefGoogle ScholarPubMed
27.Hebert, R.J.Deformation-induced synthesis of Al-based heterogeneous nanoscale microstructures. Rev. Adv. Mater. Sci. 6, 120 (2004)Google Scholar
28.Fogagnolo, J.B., Lisboa, R.D. Sá, Bolfarini, C., Kiminami, C.S., Botta, W.J.Correlation between heat- and deformation-induced crystallization of amorphous Al alloys. Philos. Mag. Lett. 88, 863 (2008)CrossRefGoogle Scholar
29.Louzguine-Luzgin, D.V., Inoue, A.Comparative study of the effect of cold rolling on the structure of Al–RE–Ni–Co (RE = rare-earth metals) amorphous and glassy alloys. J. Non-Cryst. Solids 352, 3903 (2006)CrossRefGoogle Scholar
30.Kissinger, H.E.Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
31.Louzguine-Luzgin, D.V., Inoue, A.Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl. Phys. Lett. 79, 3410 (2001)CrossRefGoogle Scholar
32.Gao, M.C., Guo, F., Poon, S.J., Shiflet, G.J.Development of fcc-Al nanocrystals in Al-Ni-Gd metallic glasses during continuous heating DSC scan. Mater. Sci. Eng., A 485, 532 (2008)CrossRefGoogle Scholar
33.Révész, Á., Varga, L.K., Suriñach, S., Baró, M.D.Thermal stability, crystallization kinetics, and grain growth in an amorphous Al85Ce5Ni8Co2 alloy. J. Mater. Res. 17, 2140 (2002)CrossRefGoogle Scholar
34.Révész, Á., Varga, L.K., Suriñach, S., Baró, M.D.Influence of the heat treatment on the crystallization mechanisms of Al85Y5Ni8Co2 metallic glass. J. Non-Cryst. Solids 343, 143 (2004)CrossRefGoogle Scholar
35.Vasiliev, A.L., Aindow, M., Blackburn, M.J., Watson, T.J.The structure of ternary compounds in a devitrified Al-rich Al–Ni–Gd alloy. Intermetallics 7, 741 (2005)CrossRefGoogle Scholar
36.Avrami, M.Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940)CrossRefGoogle Scholar
37.Louzguine, D.V., Inoue, A.Influence of a supercooled liquid on crystallization behavior of Al–Y–Ni–Co metallic glass. Mater. Lett. 54, 75 (2002)CrossRefGoogle Scholar
38.Busch, R.The thermophysical properties of bulk metallic glass-forming liquids. JOM 52, 39 (2000)CrossRefGoogle Scholar
39.Hono, K., Zhang, Y., Tsai, A.P., Inoue, A., Sakurai, T.Solute partitioning in partially crystallized Al–Ni–Ce(–Cu) metallic glasses. Scr. Metall. Mater. 32, 191 (1995)CrossRefGoogle Scholar
40.Starink, M.J., Zahra, A.M.An analysis method for nucleation and growth controlled reactions at constant heating rate. Thermochim. Acta 292, 159 (1996)CrossRefGoogle Scholar
41.Desré, P.J., Yavari, A.R.Suppression of crystal nucleation in amorphous layers with sharp concentration gradients. Phys. Rev. Lett. 64, 1533 (1990)CrossRefGoogle ScholarPubMed
42.Hóbor, S., Révész, Á., Szabó, P.J., Zhilyaev, A.P., Kovács Kis, V., Lábár, J.L., Kovács, Zs.High pressure torsion of amorphous Cu60Zr30Ti10 alloy. J. Appl. Phys. 104, 033525 (2008)CrossRefGoogle Scholar
43.Lewandowski, J.J., Greer, A.L.Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2005)CrossRefGoogle Scholar
44.Hóbor, S., Kovács, Zs., Révész, Á.Macroscopic thermoplastic model applied to the high pressure torsion of metallic glasses. J. Appl. Phys. 106, 023531 (2009)CrossRefGoogle Scholar
45.Nielsen, A.E.Diffusion controlled growth of a moving sphere. The kinetics of crystal growth in potassium perchlorate precipitation. J. Phys. Chem. 65, 46 (1961)CrossRefGoogle Scholar