Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T13:46:34.099Z Has data issue: false hasContentIssue false

Controlled loading of paramagnetic gadolinium oxide nanoplates in PMAO-g-PEG as effective T1-weighted MRI contrast agents

Published online by Cambridge University Press:  07 August 2014

Jiaquan Yuan
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore (NUS), Singapore 117574, Singapore
Erwin Peng
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore (NUS), Singapore 117574, Singapore
Jun Min Xue*
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore (NUS), Singapore 117574, Singapore
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Plate-shaped Gd2O3 nanoclusters (GNCs) with well-controlled loading were fabricated by using amphiphilic poly(maleic anhydride-alt-1-octadecene) (PMAO) grafted with PEG as nanogel. The hydrodynamic size of the obtained GNCs was well controlled to <260 nm under appropriate emulsion process conditions and they showed excellent long-term dispersibility in phosphate buffer saline. MRI measurements clearly indicated the substantial improvement in T1 effect of the nanoclusters as compared with the individual Gd2O3 nanoplates. The obtained GNCs possessed a high r1 value of 7.948 s−1mM−1 [Gd], which is 2.23 times higher than that of the commercial product Gd-DOTA, and low r2/r1 of 1.04. In vitro test of the obtained GNCs was demonstrated in NIH/3T3 cell lines, and clear T1-weighted images were obtained. Thus, the PMAO-g-PEG assisted GNCs were potentially useful for T1-weighted MRI contrast agents.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reynolds, C.H., Annan, N., Beshah, K., Huber, J.H., Shaber, S.H., Lenkinski, R.E., and Wortman, J.A.: Gadolinium-loaded nanoparticles: New contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 122, 8940 (2000).CrossRefGoogle Scholar
Lee, G.H., Chang, Y., and Kim, T.J.: Blood-pool and targeting MRI contrast agents: From Gd-chelates to Gd-nanoparticles. Eur. J. Inorg. Chem. 2012, 1924 (2012).Google Scholar
Park, J.Y., Baek, M.J., Choi, E.S., Woo, S., Kim, J.H., Kim, T.J., Jung, J.C., Chae, K.S., Chang, Y., and Lee, G.H.: Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3, 3663 (2009).Google Scholar
Burnett, K.R., Wolf, G.L., Shumacher, H.R. Jr., and Goldstein, E.J.: Gadolinium oxide: A prototype agent for contrast enhanced imaging of the liver and spleen with magnetic resonance. Magn. Reson. Imaging 3, 65 (1985).CrossRefGoogle ScholarPubMed
Faucher, L., Gossuin, Y., Hocq, A., and Fortin, M.A.: Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticle. Nanotechnology 22, 295103 (2011).CrossRefGoogle Scholar
Bridot, J.L., Faure, A.C., Laurent, S., Riviere, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J.L., Vander Elst, L., Muller, R., Roux, S., Perriat, P., and Tillement, O.: Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 129, 5076 (2007).Google Scholar
Taylor, K.M.L., Kim, J.S., Rieter, W.J., An, H., Lin, W., and Lin, W.: Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc. 130, 2154 (2008).Google Scholar
Kim, T., Momin, E., Choi, J., Yuan, K., Zaidi, H., Kim, J., Park, M., Lee, N., McMahon, M.T., Quinones-Hinojosa, A., Bulte, J.W., Hyeon, T., and Gilad, A.A.: Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 133, 2955 (2011).CrossRefGoogle ScholarPubMed
Kobayashi, H., Kawamoto, S., Saga, T., Sato, N., Ishimori, T., Konishi, J., Ono, K., Togashi, K., and Brechbiel, M.W.: Avidin-dendrimer-(1B4M-Gd)(254): A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjugate Chem. 12, 587 (2001).Google Scholar
Kobayashi, H., Kawamoto, S., Bernardo, M., Brechbiel, M.W., Knopp, M.V., and Choyke, P.L.: Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: Comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J. Control Release 111, 343 (2006).CrossRefGoogle Scholar
Fortin, M.A., Petoral, R.M., Soderlind, F., Klasson, A., Engstrom, M., Veres, T., Kall, P.O., and Uvdal, K.: Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 18, 395501 (2007).CrossRefGoogle Scholar
Bridot, J.L., Dayde, D., Riviere, C., Mandon, C., Billotey, C., Lerondel, S., Sabattier, R., Cartron, G., Le Pape, A., Blondiaux, G., Janier, M., Perriat, P., Roux, S., and Tillement, O.: Hybrid gadolinium oxide nanoparticles combining imaging and therapy. J. Mater. Chem. 19, 2328 (2009).Google Scholar
Macedo, A.G., Martins, M.A., Fernandes, S.E.M., Barros-Timmons, A., Trindade, T., Carlos, L.D., and Rocha, J.: Luminescent SiO2-coated Gd2O3:Eu3+ nanorods/poly(styrene) nanocomposites by in situ polymerization. Opt. Mater. 32, 1622 (2010).Google Scholar
Cheung, E.N.M., Alvares, R.D.A., Oakden, W., Chaudhary, R., Hill, M.L., Pichaandi, J., Mo, G.C.H., Yip, C., Macdonald, P.M., Stanisz, G.J., van Veggel, F., and Prosser, R.S.: Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem. Mater. 22, 4728 (2010).Google Scholar
Yu, W.W., Chang, E., Sayes, C.M., Drezek, R., and Colvin, V.L.: Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 17, 4483 (2006).Google Scholar
Cao, Y.C.: Synthesis of square gadolinium-oxide nanoplates. J. Am. Chem. Soc. 126, 7456 (2004).CrossRefGoogle ScholarPubMed
Paek, J., Lee, C.H., Choi, J., Choi, S.Y., Kim, A., Lee, J.W., and Lee, K.: Gadolinium oxide nanoring and nanoplate: Anisotropic shape control. Cryst. Growth Des. 7, 1378 (2007).Google Scholar
Mahajan, S.V. and Dickerson, J.H.: Synthesis of monodisperse sub-3 nm RE2O3 and Gd2O3:RE3+ nanocrystals. Nanotechnology 18, 325605 (2007).CrossRefGoogle Scholar
Park, M.J., Park, J., Hyeon, T., and Char, K.: Effect of interacting nanoparticles on the ordered morphology of block copolymer/nanoparticle mixtures. J. Polym. Sci., Part B-Polym. Phys. 44, 3571 (2006).Google Scholar
Soderlind, F., Pedersen, H., Petoral, R.M. Jr., Kall, P-O., and Uvdal, K.: Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J. Colloid Interface Sci. 288, 140 (2005).Google Scholar
Das, G.K., Heng, B.C., Ng, S-C., White, T., Loo, J.S.C., D'Silva, L., Padmanabhan, P., Bhakoo, K.K., Selvan, S.T., and Tan, T.T.Y.: Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir 26, 8959 (2010).CrossRefGoogle ScholarPubMed
Supplementary material: File

Supplementary Material

Supplementary information supplied by authors.

Download Supplementary Material(File)
File 3.3 MB