Published online by Cambridge University Press: 31 January 2011
The strain-induced austenite (γ) to martensite (α′) transformation in AISI 316L austenitic stainless steel, either in powders or bulk specimens, has been investigated. The phase transformation is accomplished using either ball-milling processes (in powders)—dynamic approach—or by uniaxial compression procedures (in bulk specimens)—quasi-static approach. Remarkably, an increase in the loading rate causes opposite effects in each case: (i) it increases the amount of transformed α′ in ball-milling procedures, but (ii) it decreases the amount of α′ in pressed samples. Both the microstructural changes (e.g., crystallite size refinement, microstrains, or type of stacking faults) in the parent γ phase and the role of the concomitant temperature rise during deformation seem to be responsible for these opposite trends. Furthermore, the results show the correlation between the γ → α′ phase transformation and the development of magnetism and enhanced hardness.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.