Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T11:06:31.608Z Has data issue: false hasContentIssue false

Controllable synthesis, characterization, and electrochemical properties of manganese oxide nanoarchitectures

Published online by Cambridge University Press:  31 January 2011

Lichun Zhang
Affiliation:
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China
Liping Kang
Affiliation:
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China
Hao Lv
Affiliation:
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China
Zhikui Su
Affiliation:
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China
Kenta Ooi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Takamatsu 761-0395, Japan
Zong-Huai Liu*
Affiliation:
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Flowerlike manganese oxide microspheres and cryptomelane-type manganese oxide nanobelts were selectively synthesized by a simple decomposition of KMnO4 under mild hydrothermal conditions without using template or cross-linking reagents. The effect of varying the hydrothermal times and temperatures on the nanostructure, morphology, compositional, and electrochemical properties of the obtained manganese oxides was investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies showed that the flowerlike manganese oxide microspheres could be obtained at relatively low hydrothermal temperatures, while high hydrothermal temperatures were favorable for the formation of cryptomelane-type manganese oxide nanobelts. A morphology and crystalline evolution of the nanostructures was observed as the hydrothermal temperature was increased from 180 to 240 °C. On the basis of changing the temperatures and hydrothermal reaction times, the formation mechanism of cryptomelane-type manganese oxide nanobelts is discussed. Cyclic voltammetry (CV) was used to evaluate the electrochemical properties of the obtained manganese oxide nanostructures, and the results show that the electrochemical properties depend on their shape and crystalline structure. This easily controllable, template-free, and environmentally friendly method has the potential for being used in syntheses of manganese oxide nanomaterials with uniform morphologies and crystal structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 2005CrossRefGoogle ScholarPubMed
2Huang, Y., Duan, X., Wei, Q., Lieber, C.M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630 2001CrossRefGoogle ScholarPubMed
3Wang, L.Z., Ebina, Y., Takada, K., Sasaki, T.: Ultrathin hollow nanoshells of manganese oxide. Chem. Commun. 9, 1074 2004CrossRefGoogle Scholar
4Bach, S., Henry, M., Baffier, N., Livage, J.: Sol-gel synthesis of manganese oxides. J. Solid State Chem. 88, 325 1990CrossRefGoogle Scholar
5Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 2002CrossRefGoogle ScholarPubMed
6Li, X.X., Cheng, F.Y., Guo, B., Chen, J.: Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 109, 14017 2005CrossRefGoogle Scholar
7Li, Q.G., Olson, J.B., Penner, R.M.: Nanocrystalline α-MnO2 nanowires by electrochemical step-edge decoration. Chem. Mater. 16, 3402 2004CrossRefGoogle Scholar
8Liu, Z.H., Kang, L.P., Zhao, M.Z., Ooi, K.: Preparation, ion-exchange, and electrochemical behavior of Cs-type manganese oxides with a novel hexagonal-like morphology. J. Mater. Res. 22, 2437 2007CrossRefGoogle Scholar
9Liu, Z.H., Kang, L.P., Yang, Z.P., Wang, Z.L.: Preparation of a polymer-intercalated layered manganese oxide nanocomposite through a delamination/reassembling process. J. Mater. Res. 21, 17187 2006CrossRefGoogle Scholar
10Zhang, L.C., Liu, Z.H., Lv, H., Tang, X., Ooi, K.: Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C 111, 8418 2007CrossRefGoogle Scholar
11Yuan, Z.Y., Zhang, Z.L., Du, G.H., Ren, T.Z., Su, B.L.: A simple method to synthesis single-crystalline manganese oxide nanowires. Chem. Phys. Lett. 378, 349 2003CrossRefGoogle Scholar
12Wang, X., Li, Y.: Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880 2002CrossRefGoogle Scholar
13Ge, J., Zhuo, L., Yang, F., Tang, B., Wu, L., Tung, C.: One-dimensional hierarchical layered KxMnO2 (x < 0.3) nanoarchitectures: Synthesis, characterization, and their magnetic properties. J. Phys. Chem. B 110, 17854 2006CrossRefGoogle ScholarPubMed
14Liu, J., Son, Y.C., Cai, J., Shen, X.F., Suib, S.L., Aindow, M.: Size control, metal substitution, and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents. Chem. Mater. 16, 276 2004CrossRefGoogle Scholar
15Ma, R., Bando, Y., Zhang, L.Q., Sasaki, T.: Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements. Adv. Mater. 16, 918 2004CrossRefGoogle Scholar
16Cheng, F., Zhao, J., Song, W., Li, C., Ma, H., Chen, J., Shen, P.: Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038 2006CrossRefGoogle ScholarPubMed
17Wu, C., Xie, Y., Wang, D., Yang, J., Li, T.: Selected-control hydrothermal synthesis of γ-MnO2 3D nanostructures. J. Phys. Chem. B 107, 13583 2003CrossRefGoogle Scholar
18Vamvakaki, M., Hadjiyannakou, S.C., Loizidou, E., Patrickios, C.S., Armes, S.P., Billingham, N.C.: Synthesis and characterization of novel networks with nano-engineered structures: Cross-linked star homopolymers. Chem. Mater. 13, 4738 2001CrossRefGoogle Scholar
19Li, Z., Ding, Y., Xiong, Y., Xie, Y.: Rational growth of various α-MnO2 hierarchical structures and β-MnO2 nanorods via a homogeneous catalytic route. Cryst. Growth Des. 5, 1953 2005CrossRefGoogle Scholar
20Patrice, R., Dupont, L., Aldon, L., Jumas, J-C., Wang, E., Tarascon, J-M.: Structural and electrochemical properties of newly synthesized Fe-substituted MnO2 samples. Chem. Mater. 16, 2772 2004CrossRefGoogle Scholar
21Li, W-N., Yuan, J., Gomez-Mower, S., Sithambaram, S., Suib, S.L.: Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes. J. Phys. Chem. B 110, 3066 2006CrossRefGoogle ScholarPubMed
22Li, W-N., Yuan, J., Shen, X-F., Gomez-Mower, S., Xu, L-P., Sithambaram, S., Aindow, M., Suib, S.L.: Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. Adv. Funct. Mater. 16, 1247 2006CrossRefGoogle Scholar
23Feng, Q., Kanoh, H., Ooi, K.: Manganese oxide porous crystals. J. Mater. Chem. 9, 319 1999CrossRefGoogle Scholar
24Subramanian, V., Zhu, H., Vajtai, R., Ajayan, P.M., Wei, B.: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207 2005CrossRefGoogle ScholarPubMed
25Yuan, J., Li, W-N., Gomez, S., Suib, S.L.: Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. J. Am. Chem. Soc. 127, 14184 2005CrossRefGoogle ScholarPubMed
26Golden, D.C., Chen, C.C., Dixon, J.B.: Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays Clay Miner. 35, 271 1987CrossRefGoogle Scholar
27Chen, X., Shen, Y.F., Suib, S.L., O’Young, C.L.: Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants. Chem. Mater. 14, 940 2002CrossRefGoogle Scholar
28Wang, X., Li, Y.: Rational synthesis of α-MnO2 single-crystal nanorods. Chem. Commun. 7, 764 2002CrossRefGoogle Scholar
29Liu, J., Makwana, V., Cai, J., Suib, S.L., Aindow, M.: Effects of alkali metal and ammonium cation templates on nanofibrous cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2). J. Phys. Chem. B 107, 9185 2003CrossRefGoogle Scholar
30Ching, S., Roark, J.L.: Sol-gel route to the tunneled manganese oxide cryptomelane. Chem. Mater. 9, 750 1997CrossRefGoogle Scholar
31Zhang, Q., Luo, J., Vileno, E., Suib, S.L.: Synthesis of cryptomelane-type manganese oxides by microwave heating. Chem. Mater. 9, 2090 1997CrossRefGoogle Scholar
32Zhang, Q., Suib, S.L.: Transformation of cryptomelane-type manganese oxides to oxygen deficient systems by microwave-induced oxygen evolution. Chem. Mater. 11, 1306 1999CrossRefGoogle Scholar
33Yang, L-X., Zhu, Y-J., Wang, W-W., Tong, H., Ruan, M-L.: Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid. J. Phys. Chem. B 110, 6609 2006CrossRefGoogle ScholarPubMed
34Japan Industrial Standard (JIS)JIS M8233: Methods for determination of active oxygen in manganese ores. (Japanese Standards Association, Tokyo,1969Google Scholar
35JCPDS No. 52-0556. International Center for Diffraction Data Newton Square, PA 1996Google Scholar
36JCPDS No. 44-1386. International Center for Diffraction Data Newton Square, PA 1989Google Scholar
37Liu, Z.H., Ooi, K., Kanoh, H., Tang, W., Tomida, T.: Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 16, 4154 2000CrossRefGoogle Scholar
38Liu, Z.H., Yang, X., Makita, Y., Ooi, K.: Preparation of a polycation-intercalated layered manganese oxide nanocomposite by a delamination/reassembling process. Chem. Mater. 14, 4800 2002CrossRefGoogle Scholar
39Liu, J., Son, Y-C., Cai, J., Shen, X., Suib, S.L., Aindow, M.: Size control, metal substitution, and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents. Chem. Mater. 16, 276 2004CrossRefGoogle Scholar
40Shen, X-F., Ding, Y-S., Hanson, J.C., Aindow, M., Suib, S.L.: In situ synthesis of mixed-valent manganese oxide nanocrystals: An in situ synchrotron x-ray diffraction study. J. Am. Chem. Soc. 128, 4570 2006CrossRefGoogle Scholar
41Penn, R.L., Banfield, J.F.: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 281, 969 1998CrossRefGoogle ScholarPubMed
42Trentler, T.J., Goel, S.C., Hickman, K.M., Viano, A.M., Ching, M.Y., Beatty, A.M., Gibbons, P.C., Buhro, W.E.: Solution–liquid– solid growth of indium phosphide fibers from organometallic precursors: Elucidation of molecular and nonmolecular components of the pathway. J. Am. Chem. Soc. 119, 2172 1997CrossRefGoogle Scholar
43Zheng, D., Sun, S., Fan, W., Yu, H., Fan, C., Cao, G., Yin, Z., Song, X.: One-step preparation of single-crystalline β-MnO2 nanotubes. J. Phys. Chem. B 109, 16439 2005CrossRefGoogle ScholarPubMed
44Shen, X.F., Ding, Y.S., Liu, J., Cai, J., Laubernds, K., Zerger, R.P., Vasiliev, A., Aindow, M., Suib, S.L.: Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv. Mater. 17, 805 2005CrossRefGoogle Scholar
45Espinal, L., Suib, S.L., Rusling, J.F.: Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2. J. Am. Chem. Soc. 126, 7676 2004CrossRefGoogle ScholarPubMed
46Majidi, M.R., Jouyban, A., Zeynali, A.: Voltammetric behavior and determination of isoniazid in pharmaceuticals by using over-oxidized polypyrrole glassy carbon modified electrode. J. Electroanal. Chem. 589, 32 2006CrossRefGoogle Scholar
47Goyal, R.N., Singh, S.P.: Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim. Acta 51, 3008 2006CrossRefGoogle Scholar
48Goyal, R.N., Gupta, V.K., Oyama, M., Bachheti, N.: Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochem. Commun. 7, 803 2005CrossRefGoogle Scholar
49Wang, L., Zhu, Y.: Effects of nanostructure on catalytic degradation of ethanol on SrCO3 catalysts. J. Phys. Chem. B 109, 5118 2005CrossRefGoogle ScholarPubMed