Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T05:01:45.466Z Has data issue: false hasContentIssue false

Complications of using thin film geometries for nanocrystalline thermal stability investigations

Published online by Cambridge University Press:  15 July 2020

Xuyang Zhou
Affiliation:
Department of Metallurgical & Materials Engineering, The University of Alabama, Tuscaloosa, AL35487, USA
Tyler Kaub
Affiliation:
Department of Metallurgical & Materials Engineering, The University of Alabama, Tuscaloosa, AL35487, USA
Florian Vogel
Affiliation:
Department of Metallurgical & Materials Engineering, The University of Alabama, Tuscaloosa, AL35487, USA Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou510632, China
Gregory B. Thompson*
Affiliation:
Department of Metallurgical & Materials Engineering, The University of Alabama, Tuscaloosa, AL35487, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report the sputter deposition of Cu-7V and Cu-27V (at.%) alloy films in an attempt to yield a “clean” alloy to investigate nanocrystalline stability. Films grown in high vacuum chambers can mitigate processing contaminates which convolute the identification of nanocrystalline stability mechanism(s). The initial films were very clean with carbon and oxygen contents ranging between ~0.01 and 0.38 at.%. Annealing at 400 °C/1 h facilitated the clustering of vanadium at high-angle grain boundary triple junctions. At 800 °C/1 h annealing, the Cu-7V film lost its nanocrystalline grain sizes with the vanadium partitioned to the free surface; the Cu-27V retained its nanocrystalline grains with vanadium clusters in the matrix, but surface solute segregation was present. Though the initial alloy and vacuum annealing retained the low contamination levels sought, the high surface area-to-volume ratio of the film, coupled with high segregation tendencies, enabled this system to phase separate in such a manner that the stability mechanisms that were to be studied were lost at high temperatures. This illustrates obstacles in using thin films to address nanocrystalline stability.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Detor, A. and Schuh, C.: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 55(12), 4221 (2007).CrossRefGoogle Scholar
Koch, C., Scattergood, R., Darling, K., and Semones, J.: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43(23–24), 7264 (2008).CrossRefGoogle Scholar
Koch, C., Scattergood, R., Saber, M., and Kotan, H.: High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies. J. Mater. Res. 28(13), 1785 (2013).10.1557/jmr.2012.429CrossRefGoogle Scholar
Nes, E., Ryum, N., and Hunderi, O.: On the zener drag. Acta Metall. 33(1), 11 (1985).CrossRefGoogle Scholar
Darling, K.A., VanLeeuwen, B.K., Koch, C.C., and Scattergood, R.O.: Thermal stability of nanocrystalline Fe–Zr alloys. Mater. Sci. Eng., A 527(15), 3572 (2010).10.1016/j.msea.2010.02.043CrossRefGoogle Scholar
Khalajhedayati, A. and Rupert, T.J.: High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy. JOM 67(12), 2788 (2015).10.1007/s11837-015-1644-9CrossRefGoogle Scholar
Liu, F. and Kirchheim, R.: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth. 264(1–3), 385 (2004).CrossRefGoogle Scholar
Weissmuller, J.: Some basic notions on nanostructured solids. Mater. Sci. Eng., A 179, 102 (1994).10.1016/0921-5093(94)90173-2CrossRefGoogle Scholar
Chen, Y., Liu, Y., Khatkhatay, F., Sun, C., Wang, H., and Zhang, X.: Significant enhancement in the thermal stability of nanocrystalline metals via immiscible tri-phases. Scr. Mater. 67(2), 177 (2012).CrossRefGoogle Scholar
Gupta, D.: Diffusion, solute segregations and interfacial energies in some material: An overview. Interface Sci. 11(1), 7 (2003).CrossRefGoogle Scholar
Chookajorn, T. and Schuh, C.A.: Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20at.% Ti. Acta Mater. 73, 128 (2014).10.1016/j.actamat.2014.03.039CrossRefGoogle Scholar
Murdoch, H.A. and Schuh, C.A.: Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J. Mater. Res. 28(16), 2154 (2013).CrossRefGoogle Scholar
Darling, K.A., VanLeeuwen, B.K., Semones, J.E., Koch, C.C., Scattergood, R.O., Kecskes, L.J., and Mathaudhu, S.N.: Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater. Sci. Eng., A 528(13–14), 4365 (2011).CrossRefGoogle Scholar
Peng, H., Chen, Y., and Liu, F.: Effects of alloying on nanoscale grain growth in substitutional binary alloy system: Thermodynamics and kinetics. Metall. Mater. Trans. A 46A(11), 5431 (2015).CrossRefGoogle Scholar
Detor, A. and Schuh, C.: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55(1), 371 (2007).CrossRefGoogle Scholar
Rupert, T., Cai, W., and Schuh, C.: Abrasive wear response of nanocrystalline Ni-W alloys across the Hall-Petch breakdown. Wear 298, 120 (2013).10.1016/j.wear.2013.01.021CrossRefGoogle Scholar
Novikov, V.: Grain growth in nanocrystalline materials. Mater. Lett. 159, 510 (2015).CrossRefGoogle Scholar
Hillert, M. and Sundman, B.: A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall. 24(8), 731 (1976).CrossRefGoogle Scholar
Kirchheim, R.: Grain coarsening inhibited by solute segregation. Acta Mater. 50(2), 413 (2002).CrossRefGoogle Scholar
Trelewicz, J.R. and Schuh, C.A.: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79(9), 094112 (2009).CrossRefGoogle Scholar
Darling, K.A., Tschopp, M.A., VanLeeuwen, B.K., Atwater, M.A., and Liu, Z.K.: Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps. Comput. Mater. Sci. 84, 255 (2014).10.1016/j.commatsci.2013.10.018CrossRefGoogle Scholar
Saber, M., Koch, C., and Scattergood, R.: Thermodynamic grain size stabilization models: An overview. Mater. Res. Lett. 3(2), 65 (2015).CrossRefGoogle Scholar
Sooraj, S., Muthaiah, V., Kang, P., Koch, C., and Mula, S.: Microstructural evolution and thermal stability of Fe-Zr metastable alloys developed by mechanical alloying followed by annealing. Philos. Mag. 96(25), 2649 (2016).CrossRefGoogle Scholar
Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).CrossRefGoogle ScholarPubMed
Weissmüller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).CrossRefGoogle Scholar
Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).10.1016/j.actamat.2007.05.047CrossRefGoogle Scholar
Drolet, J. and Galibois, A.: Impurity-drag effect on grain growth. Acta Metall. 16(12), 1387 (1968).10.1016/0001-6160(68)90035-7CrossRefGoogle Scholar
Abdeljawad, F. and Foiles, S.M.: Stabilization of nanocrystalline alloys via grain boundary segregation: A diffuse interface model. Acta Mater. 101, 159 (2015).CrossRefGoogle Scholar
Smith, C.S.: Introduction to grains, phases, and interfaces: an interpretation of microstructure. Trans. Metall. Soc. AIME 175, 15 (1948).Google Scholar
Farber, B., Cadel, E., Menand, A., Schmitz, G., and Kirchheim, R.: Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48(3), 789 (2000).CrossRefGoogle Scholar
Hentschel, T., Isheim, D., Kirchheim, R., Muller, F., and Kreye, H.: Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater. 48(4), 933 (2000).10.1016/S1359-6454(99)00371-7CrossRefGoogle Scholar
Rojhirunsakool, T., Darling, K.A., Tschopp, M.A., Pun, G.P.P., Mishin, Y., Banerjee, R., and Kecskes, L.J.: Structure and thermal decomposition of a nanocrystalline mechanically alloyed supersaturated Cu-Ta solid solution. MRS Commun. 5(2), 333 (2015).CrossRefGoogle Scholar
Chookajorn, T., Park, M., and Schuh, C.A.: Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W-Cr. J. Mater. Res. 30(2), 151 (2015).CrossRefGoogle Scholar
Cahn, J.W.: The impurity-drag effect in grain boundary motion. Acta Mater. 10, 789 (1962).CrossRefGoogle Scholar
Detor, A. and Schuh, C.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 3233 (2007).10.1557/JMR.2007.0403CrossRefGoogle Scholar
Murdoch, H.A. and Schuh, C.A.: Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61(6), 2121 (2013).CrossRefGoogle Scholar
O'Brien, C., Barr, C., Price, P., Hattar, K., and Foiles, S.: Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals. J. Mater. Sci. 53(4), 2911 (2018).CrossRefGoogle Scholar
Zhou, X., Yu, X.-x., Kaub, T., Martens, R.L., and Thompson, G.B.: Grain boundary specific segregation in nanocrystalline Fe(Cr). Sci. Rep. 6, 34642 (2016).10.1038/srep34642CrossRefGoogle Scholar
Kapoor, M., Kaub, T., Darling, K.A., Boyce, B.L., and Thompson, G.B.: An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb. Acta Mater. 126, 564 (2017).CrossRefGoogle Scholar
Clark, B., Hattar, K., Marshall, M., Chookajorn, T., Boyce, B., and Schuh, C.: Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs. JOM 68(6), 1625 (2016).CrossRefGoogle Scholar
Marvel, C.J., Cantwell, P.R., and Harmer, M.P.: The critical influence of carbon on the thermal stability of nanocrystalline Ni-W alloys. Scr. Mater. 96, 45 (2015).CrossRefGoogle Scholar
Marvel, C.J., Hornbuckle, B.C., Darling, K.A., and Harmer, M.P.: Intentional and unintentional elemental segregation to grain boundaries in a Ni-rich nanocrystalline alloy. J. Mater. Sci. 54(4), 3496 (2019).CrossRefGoogle Scholar
Seol, J.B., Kwak, C.M., Han, J.C., Baek, K.H., and Jeong, Y.K.: Correlative transmission electron microscopy and atom probe tomography on field evaporation mechanism of a bulk LaAlO3 oxide. Appl. Surf. Sci. 479, 828 (2019).CrossRefGoogle Scholar
Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S., and Goto, S.: Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112(12), 126103 (2014).CrossRefGoogle ScholarPubMed
Zhou, X., and Thompson, G.B.: Charge-state field evaporation behavior in Cu(V) nanocrystalline alloys. Microsc. Microanal. 25, 501 (2019).CrossRefGoogle ScholarPubMed
Stender, P., Balogh, Z., and Schmitz, G.: Triple junction segregation in nanocrystalline multilayers. Phys. Rev. B. 83(12), 121407 (2011).CrossRefGoogle Scholar
Chellali, M.R., Balogh, Z., and Schmitz, G.: Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu. Ultramicroscopy 132, 164 (2013).CrossRefGoogle Scholar
Doherty, R.D.: Grain coarsening – Insights from curvature modeling Cyril Stanley Smith Lecture. Mater. Sci. Forum 715–716, 1 (2012).CrossRefGoogle Scholar
Shetty, P.P., Emigh, M.G., and Krogstad, J.A.: Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys. J. Mater. Res. 34(1), 48 (2019).CrossRefGoogle Scholar
Zhou, X. and Thompson, G.B.: In situ TEM observations of initial oxidation behavior in Fe-rich Fe-Cr alloys. Surf. Coat. Technol. 357, 332 (2019).10.1016/j.surfcoat.2018.09.084CrossRefGoogle Scholar
Qin, Y.F. and Wang, S.Q.: Ab-initio study of surface segregation in aluminum alloys. Appl. Surf. Sci. 399, 351 (2017).CrossRefGoogle Scholar
Chang, Y.H., Lu, W.J., Guenole, J., Stephenson, L.T., Szczpaniak, A., Kontis, P., Ackerman, A.K., Dear, F.F., Mouton, I., Zhong, X.K., Zhang, S.Y., Dye, D., Liebscher, C.H., Ponge, D., Korte-Kerzel, S., Raabe, D., and Gault, B.: Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials. Nat. Commun. 10, 942 (2019).10.1038/s41467-019-08752-7CrossRefGoogle ScholarPubMed
Hoshino, K., Iijima, Y., and Hirano, K.I.: Diffusion of vanadium, chromium, and manganese in copper. Metall. Trans. A 8(3), 469 (1977).CrossRefGoogle Scholar
Sadigh, B., Erhart, P., Stukowski, A., Caro, A., Martinez, E., and Zepeda-Ruiz, L.: Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B. 85(18), 184203 (2012).CrossRefGoogle Scholar
Giannuzzi, L.A. and Stevie, F.A.: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197 (1999).CrossRefGoogle Scholar
Zhou, X. and Thompson, G.B.: The influence of alloying interactions on thin film growth stresses. Appl. Surf. Sci. 463, 545 (2019).10.1016/j.apsusc.2018.08.212CrossRefGoogle Scholar
Hellman, O.C., Vandenbroucke, J.A., Rüsing, J., Isheim, D., and Seidman, D.N.: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6(5), 437 (2000).10.1007/S100050010051CrossRefGoogle ScholarPubMed
Barton, D.J., Hornbuckle, B.C., Darling, K.A., and Thompson, G.B.: The influence of isoconcentration surface selection in quantitative outputs from proximity histograms. Microsc. Microanal. 25, 401 (2019).CrossRefGoogle ScholarPubMed
Chen, Y.M., Chou, P.H., and Marquis, E.A.: Quantitative atom probe tomography characterization of microstructures in a proton irradiated 304 stainless steel. J. Nucl. Mater. 451(1-3), 130 (2014).CrossRefGoogle Scholar
Stephenson, L.T., Moody, M.P., Liddicoat, P.V., and Ringer, S.P.: New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc. Microanal. 13(6), 448 (2007).CrossRefGoogle ScholarPubMed
Marquis, E. and Hyde, J.: Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng., Rep. 69(4–5), 37 (2010).CrossRefGoogle Scholar
Li, J.: AtomEye: an efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11(2), 173 (2003).CrossRefGoogle Scholar
Alexander, S.: Visualization and analysis of atomistic simulation data with OVITO: The Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Supplementary material: File

Zhou et al. supplementary material

Zhou et al. supplementary material

Download Zhou et al. supplementary material(File)
File 459.2 KB