Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T17:21:26.221Z Has data issue: false hasContentIssue false

Chrysanthemum like carbon nanofiber foam architectures for supercapacitors

Published online by Cambridge University Press:  07 February 2013

Wei Wang
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, California 92521; and Department of Electrical Engineering, University of California, Riverside, California 92521
Shirui Guo
Affiliation:
Department of Chemistry, University of California, Riverside, California 92521
Mihrimah Ozkan*
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, California 92521; and Department of Electrical Engineering, University of California, Riverside, California 92521
Cengiz S. Ozkan*
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, California 92521; and Department of Mechanical Engineering, University of California, Riverside, California 92521
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Three-dimensional (3D) chrysanthemum-like carbon nanofiber (CCNF) foam architectures were synthesized on highly porous nickel foam via a one-step ambient pressure chemical vapor deposition process by introducing a mixture of precursor gases (H2 and C2H2). The as-synthesized 3D foam architectures were characterized by scanning electron microscopy and transmission electron microscopy, which demonstrate high porosity and a densely packed nature of the hierarchical carbon nanostructures. Symmetrical electrochemical double-layer capacitors were fabricated using electrodes based on the CCNF foam architectures. Cyclic voltammetry, charge–discharge measurements, and electrochemical impedance spectroscopy were conducted to determine the performance metrics. The supercapacitors (SCs) demonstrate a high areal capacitance of 1.37 F/cm2 (gravimetric specific capacitance: 23.83 F/g), which leads to superior values for per area energy density (0.19 Wh/cm2) and power density (141.77 W/cm2). In addition, capacitance retention of ∼100% over 13,000 charge–discharge cycles demonstrates the high electrochemical stability of this type of carbon nanostructure foam for high areal capacitance SCs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845854 (2008).CrossRefGoogle ScholarPubMed
Wu, Z.S., Ren, W., Wang, D.W., Li, F., Liu, B., and Cheng, H.M.: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 58355842 (2010).CrossRefGoogle ScholarPubMed
Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.F., and Cui, Y.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A 106, 2149021494 (2009).CrossRefGoogle ScholarPubMed
Lang, X., Hirata, A., Fujita, T., and Chen, M.: Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232236 (2011).CrossRefGoogle ScholarPubMed
Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., and Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 34983502 (2008).CrossRefGoogle ScholarPubMed
Stoller, M.D. and Ruoff, R.S.: Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 12941301 (2010).CrossRefGoogle Scholar
Pandolfo, A.G. and Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157, 1127 (2006).CrossRefGoogle Scholar
Yu, A.P., Roes, I., Davies, A., and Chen, Z.W.: Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96, 253105-1–253105-3 (2010).CrossRefGoogle Scholar
Murali, S., Dreyer, D.R., Valle-Vigon, P., Stoller, M.D., Zhu, Y., Morales, C., Fuertes, A.B., Bielawski, C.W., and Ruoff, R.S.: Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 13, 26522655 (2011).CrossRefGoogle ScholarPubMed
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 39063924 (2010).CrossRefGoogle ScholarPubMed
McDonough, J.R., Choi, J.W., Yang, Y., La Mantia, F., Zhang, Y., and Cui, Y.: Carbon nanofiber supercapacitors with large areal capacitances. Appl. Phys. Lett. 95, 243109–243109-3 (2009).CrossRefGoogle Scholar
Wang, W., Guo, S., Penchev, M., Zhong, J., Lin, J., Bao, D., Vullev, V., Ozkan, M., and Ozkan, C.S.: Hybrid low resistance ultracapacitor electrodes based on 1-pyrenebutyric acid functionalized centimeter-scale graphene sheets. J. Nanosci. Nanotechnol. 12, 69136920 (2012).CrossRefGoogle Scholar
Wang, W., Guo, S., Penchev, M., Ruiz, I., Bozhilov, K.N., Yan, D., Ozkan, M., and Ozkan, C.S.: Three dimensional few-layer graphene-carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy (2012). http://dx.doi.org/10.1016/j.nanoen.2012.10.001.Google Scholar
Frackowiak, E.: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 17741785 (2007).CrossRefGoogle ScholarPubMed
Ye, J.S., Cui, H.F., Liu, X., Lim, T.M., Zhang, W.D., and Sheu, F.S.: Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1, 560565 (2005).CrossRefGoogle ScholarPubMed
Weng, Z., Su, Y., Wang, D-W., Li, F., Du, J., and Cheng, H-M.: Graphene–cellulose paper flexible supercapacitors. Adv. Energy Mater. 1, 917922 (2011).CrossRefGoogle Scholar
Chinthaginjala, J.K., Thakur, D.B., Seshan, K., and Lefferts, L.: How carbon-nano-fibers attach to Ni foam. Carbon 46, 16381647 (2008).CrossRefGoogle Scholar
Yan, X., Tai, Z., Chen, J., and Xue, Q.: Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale 3, 212216 (2011).CrossRefGoogle ScholarPubMed
Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Ci, L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O., and Ajayan, P.M.: Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112116 (2006).CrossRefGoogle ScholarPubMed
Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., and Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 37233728 (2010).CrossRefGoogle ScholarPubMed
Supplementary material: File

Wang Supplementary Material

Appendix

Download Wang Supplementary Material(File)
File 254.5 KB