Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T12:05:30.585Z Has data issue: false hasContentIssue false

Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon

Published online by Cambridge University Press:  31 January 2011

Christian A. Zorman
Affiliation:
Department of Electrical Engineering and Applied Physics, Case Western Reserve University, Cleveland, Ohio 44106
Shuvo Roy
Affiliation:
Department of Electrical Engineering and Applied Physics, Case Western Reserve University, Cleveland, Ohio 44106
Chien-Hung Wu
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Aaron J. Fleischman
Affiliation:
Department of Electrical Engineering and Applied Physics, Case Western Reserve University, Cleveland, Ohio 44106
Mehran Mehregany
Affiliation:
Department of Electrical Engineering and Applied Physics, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Extract

X-ray diffraction, transmission electron microscopy, and Rutherford backscattering spectroscopy were used to characterize the microstructure of polycrystalline SiC films grown on as-deposited and annealed polysilicon substrates. For both substrate types, the texture of the SiC films resembles the polysilicon at the onset of SiC growth. During the high temperature deposition process, the as-deposited polysilicon recrystallizes without influencing the crystallinity of the overlying SiC. An investigation of the SiC/polysilicon interface reveals that a heteroepitaxial relationship exists between polysilicon and SiC grains. From this study, a method to control the orientation of highly textured polycrystalline SiC films has been developed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mehregany, M., IEEE Circuits Dev. 9, 14 (1993).CrossRefGoogle Scholar
2.Pearson, G. L., Read, W. T. Jr., and Feldman, W. L., Acta Metall. 5, 181 (1957).CrossRefGoogle Scholar
3.Krotz, G., Legner, W., MollerCh. Wagner, H. Ch. Wagner, H., Sonntag, H., and Muller, G., Proc. 8th Int. Conf. Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden (1995), pp. 186188.Google Scholar
4.Powell, J.A., Matus, L.G., and Kuczmarski, M.A., J. Electrochem. Soc. 134, 1558 (1987).CrossRefGoogle Scholar
5.Steckl, A. J. and Li, J. P., IEEE Trans. Electron. Dev. 39, 64 (1992).CrossRefGoogle Scholar
6.Hattori, Y., Suzuki, T., Murata, T., Yabumi, T., Yasuda, K., and Saji, M., J. Cryst. Growth 115, 607 (1991).CrossRefGoogle Scholar
7.Tong, L., Mehregany, M., and Matus, L.G., Appl. Phys. Lett. 60, 2992 (1992).CrossRefGoogle Scholar
8.Rajan, N., Zorman, C., Mehregany, M., DeAnna, R., and Harvey, R., in Proc. 10th Int. Workshop on Microelectromechanical Systems (Nagoya, Japan, 1997), pp. 165168.Google Scholar
9.Kamimura, K., Koike, K., Ono, H., Homma, T., Onuma, Y., and Yonekubo, S., in Amorphous and Crystalline Silicon Carbide IV, edited by RahmanC.Y. Yang, M.M. C.Y. Yang, M.M. and Harris, G. L. (Springer Proc. in Physics, Berlin, 1992), Vol. 71, pp. 259265.CrossRefGoogle Scholar
10.Kobayashi, J., Yonekubo, S., Kamimura, K., and Onuma, Y., in Proc. Int. Conf. on Silicon Carbide and Related Materials, edited by Nakashima, S., Matsunami, H., Yoshida, S., and Harima, H. (IOP Publishing Ltd., Bristol, U.K., 1995), pp. 229232.Google Scholar
11.Onuma, Y., Miyashita, S., Nishibe, Y., Kamimura, K., and Tezuka, K., in Amorphous and Crystalline Silicon Carbide II, edited by Rahman, M.M., Yang, C.Y., and Harris, G. L. (Springer Proc. in Physics, Berlin, 1989), Vol. 43, pp. 212216.CrossRefGoogle Scholar
12.Nishino, S. and Saraie, J., in Amorphous and Crystalline Silicon Carbide II, edited by Rahman, M.M., Yang, C.Y., and Harris, G. L. (Springer Proc. in Physics, Berlin, 1989), Vol. 43, pp. 813.CrossRefGoogle Scholar
13.Nagasawa, H. and Yamaguchi, Y., Thin Solid Films 225, 230 (1993).CrossRefGoogle Scholar
14.Kamins, T., Metall. Trans. of AIME 2, 22922294 (1971).CrossRefGoogle Scholar
15.VaudinL.Wei, M. L.Wei, M., Hwang, C. S., XuG.White, J. G.White, J., and Steckl, A. J., J. Mater. Res. 10, 1889 (1995).Google Scholar
16.Adamczewska, J. and Budzynski, T., Thin Solid Films 113, 271 (1984).CrossRefGoogle Scholar
17.Kamins, T., in Polycrystalline Silicon for Integrated Circuit Ap-plications (Kluwer Academic Publishers, Boston, MA, 1988), p. 61.CrossRefGoogle Scholar
18.Fleischman, A. J., Roy, S., Zorman, C.A., and Mehregany, M., in Proc. 9th Int. Workshop on Microelectromechanical Systems (San Diego, CA, 1996), pp. 234238.CrossRefGoogle Scholar
19.Wolf, S. and Tauber, R.N., in Silicon Processing for the VLSI Era, Vol. 1—Process Technology (Lattice Press, Sunset Beach, CA, 1986), pp. 198241.Google Scholar
20.Zorman, C.A., Fleischman, A. J., Dewa, A. S., Mehregany, M., Jacob, C., Nishino, S., and Pirouz, P., J. Appl. Phys. 78, 5136 (1995).CrossRefGoogle Scholar
21.Becourt, N., Ponthenier, J. L., Papon, A.M., and Joussand, C., Physica B 185, 79 (1993).CrossRefGoogle Scholar
22.Kakinuma, H., J. Vac. Sci. Technol. A 13, 2310 (1995).CrossRefGoogle Scholar