Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T17:25:12.259Z Has data issue: false hasContentIssue false

Characterization of hydrogenated nanocrystalline silicon thin films prepared with various negative direct current biases

Published online by Cambridge University Press:  31 January 2011

Jae-Hyun Shim
Affiliation:
Department of Materials Science and Engineering, Inha University, Incheon 402-751, South Korea
Nam-Hee Cho*
Affiliation:
Department of Materials Science and Engineering, Inha University, Incheon 402-751, South Korea
El-Hang Lee
Affiliation:
School of Information and Communication Engineering, Inha University, Incheon 402-751, South Korea
Han-Sup Lee
Affiliation:
Department of Textile Engineering, Inha University, Incheon 402-751, South Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hydrogenated nanocrystalline Si (nc-Si:H) thin films were prepared by plasma- enhanced chemical vapor deposition (PECVD). The films were deposited with a radio-frequency power of 100 W, while substrates were exposed to direct current (dc) biases in the range from 0 to −400 V. The effects of dc bias on the formation of nanoscale Si crystallites in the films and on their optical characteristics were investigated. The size of the Si crystallites in the films ranges from ∼1.9 to ∼4.1 nm. The relative fraction of the crystallites in the films reached up to ∼56.5% when a dc bias of −400 V was applied. Based on the variation in the structural, chemical, and optical features of the films with dc bias voltages, a model for the formation of nanostructures of the nc-Si:H films prepared by PECVD was suggested. This model can be utilized to understand the evolution in the size and relative fraction of the nanocrystallites as well as the amorphous matrix in the nc-Si:H films.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 1990CrossRefGoogle Scholar
2Linnors, J., Lalic, N.: High quantum efficiency for a porous silicon light emitting diode under pulsed operation. Appl. Phys. Lett. 66, 3048 1995CrossRefGoogle Scholar
3Gelloz, B., Koshida, N.: Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode. J. Appl. Phys. 88, 4319 2000CrossRefGoogle Scholar
4Cullis, A.G., Canham, L.T., Calcott, P.D.J.: The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909 1997Google Scholar
5Walters, R.J., Kik, P.G., Casperson, J.D., Atwater, H.A., Lindstedt, R., Giorgi, M., Bourianoff, G.: Silicon optical nanocrystal memory. Appl. Phys. Lett. 85, 2622 2004CrossRefGoogle Scholar
6Antoine, A.M., Drevillon, B., Cabarrocas, P. Roca i: In situ investigation of the growth of rf glow-discharge deposited amorphous germanium and silicon films. J. Appl. Phys. 61, 2501 1987Google Scholar
7van Sark, W.G.J.H.M., Bezemer, J., van der Weg, W.F.: VHF a-Si:H solar cells: A systematic material and cell study. J. Mater. Res. 13, 45 1998CrossRefGoogle Scholar
8Köhler, K., Coburn, J.W., Horne, D.E., Kay, E.: Plasma potentials of 13.56-MHz rf argon glow discharges in a planar system. J. Appl. Phys. 57, 59 1985CrossRefGoogle Scholar
9Coburn, J.W., Kay, E.: Positive-ion bombardment of substrates in rf diode glow discharge sputtering. J. Appl. Phys. 43, 4965 1972CrossRefGoogle Scholar
10Nozawa, R., Takeda, H., Ito, M., Hori, M., Goto, T.: Substrate bias effects on low temperature polycrystalline silicon formation using electron cyclotron resonance SiH4/H2 plasma. J. Appl. Phys. 81, 8035 1997Google Scholar
11Takagi, T.: Ion–surface interactions during thin film deposition. J. Vac. Sci. Technol., A 2, 382 1984CrossRefGoogle Scholar
12Hwang, Y.T., Heo, K.Y., Chang, C.H., Joo, M.K., Ree, M.H.: Synchrotron x-ray reflectivity study of high-dielectric constant alumina thin films prepared by atomic layer deposition. Thin Solid Films 510, 159 2006CrossRefGoogle Scholar
13Xia, H., He, Y.L., Wang, L.C., Zhang, W., Liu, X.N., Zhang, X.K., Feng, D., Jackson, H.E.: Phonon mode study of Si nanocrystals using micro-Raman spectroscopy. J. Appl. Phys. 78, 6705 1995CrossRefGoogle Scholar
14Wensheng, W., Tianmin, W., Chunxi, Z., Guohua, L., Hexiang, H., Kun, D.: Preferred growth of nanocrystalline silicon in boron-doped nc-Si:H films. Vacuum 74, 69 2004CrossRefGoogle Scholar
15Richter, H., Wang, Z.P., Ley, L.: The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 1981CrossRefGoogle Scholar
16Campbell, I.H., Fauchet, P.M.: The effects of microcrystal size and shape on the one-phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 1986CrossRefGoogle Scholar
17Veprek, S., Sarott, F.A., Iqbal, Z.: Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon. Phys. Rev. B 36, 3344 1987CrossRefGoogle ScholarPubMed
18He, Y., Yin, C., Cheng, G., Wang, L., Liu, X., Hu, G.Y.: The structure and properties of nanosize crystalline silicon films. J. Appl. Phys. 75, 797 1994Google Scholar
19Veprek, S., Iqbal, Z., Sarott, F.A.: A thermodynamic criterion of the crystalline-to-amorphous transition in silicon. Philos. Mag. B 45, 137 1982CrossRefGoogle Scholar
20Nozawa, R., Takeda, H., Ito, M., Hori, M., Goto, T.: In situ observation of hydrogenated amorphous silicon surfaces in electron cyclotron resonance hydrogen plasma annealing. J. Appl. Phys. 85, 1172 1999CrossRefGoogle Scholar
21Cho, C-H., Kim, B-H., Kim, T-W., Park, S-J., Park, N-M., Sung, G-Y.: Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film. App. Phys. Lett. 86, 143107 2005CrossRefGoogle Scholar
22Drevillon, B., Toulemonde, M.: Hydrogen content of amorphous silicon films deposited in a multipole plasma. J. Appl. Phys. 58, 535 1985Google Scholar
23Lannin, J.S., Pilione, L.J., Kshirsagar, S.T., Messier, R., Rose, R.C.: Variable structural order in amorphous silicon. Phys. Rev. B 26, 3506 1983CrossRefGoogle Scholar
24Weia, W., Xub, G., Wang, J., Wang, T.: Raman spectra of intrinsic and doped hydrogenated nanocrystalline silicon films. Vacuum 81, 656 2007Google Scholar
25Shim, J-H., Cho, N-H.: The effect of dc bias voltage on the structural and optical properties of hydrogenated nanocrystalline silicon thin films. Solid State Phenom. 124–126, 1261 2007CrossRefGoogle Scholar
26Cullis, A.G., Canham, L.T.: Visible light emission due to quantum-size effects in highly porous crystalline silicon. Nature 353, 335 1991CrossRefGoogle Scholar
27Behrensmeier, R., Namavar, F., Amisola, G.B., Otter, F.A., Galligan, J.M.: Further evidence for quantum confinement in porous silicon. Appl. Phys. Lett. 62, 2408 1993Google Scholar
28Narasimhan, K.L., Banerjee, S., Srivastava, A.K., Sardesai, A.: Anomalous temperature dependence of photoluminescence in porous silicon. Appl. Phys. Lett. 62, 331 1993CrossRefGoogle Scholar
29John, G.C., Singh, V.A.: Theory of the photoluminescence spectra of porous silicon. Phys. Rev. B 50, 5329 1994CrossRefGoogle ScholarPubMed
30Kwack, H-S., Sun, Y., Cho, Y-H., Park, N-M., Park, S-J.: Anomalous temperature dependence of optical emission in visible-light–emitting amorphous silicon quantum dots. Appl. Phys. Lett. 83, 2901 2003CrossRefGoogle Scholar