Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T02:42:11.562Z Has data issue: false hasContentIssue false

Characterization of columns grown during KrF laser micromachining of Al2O3–TiC ceramics

Published online by Cambridge University Press:  31 January 2011

V. Oliveira
Affiliation:
Department of Engineering Materials, Instituto Superior Téico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
R. Vilar
Affiliation:
Department of Engineering Materials, Instituto Superior Téico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Get access

Abstract

This paper aims to contribute to the understanding of column formation mechanisms in Al2O3–TiC ceramics micromachined using excimer lasers. Chemical and structural characterization of columns grown in Al2O3–TiC composite processed with 200 KrF laser pulses at 10 J/cm2 was carried out by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Fully developed columns consist of a core of unprocessed material surrounded by an outer layer of Al2TiO5, formed in oxidizing conditions, and an inner layer, formed in reducing conditions, composed of TiC and Al3Ti or an AlTi solid solution. Possible mechanisms of column formation are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heitz, J., Pedarning, J.D., Bauerle, D., and Petzow, G., Appl. Phys. A 65, 259 (1997).CrossRefGoogle Scholar
2.Foltyn, S.R., in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D.B. and Hubler, G.K. (Wiley-Interscience, New York, 1994), pp. 89113.Google Scholar
3.Lappalainen, J., Frantti, J., and Lanto, V., J. Am. Cer. Soc. 82, 889 (1999).CrossRefGoogle Scholar
4.O'Brien, T.P., Lawler, J.F., Lunney, J.G., and Blau, W.J., Mater. Sci. Eng. B 13, 9 (1992).CrossRefGoogle Scholar
5.Oliveira, V., Conde, O., and Vilar, R., Adv. Eng. Mater. 3, 75 (2001).3.0.CO;2-Z>CrossRefGoogle Scholar
6.Man, H.C., Zhang, X.M., Yue, T.M., and Lau, W.S., J. Mater. Proc. Technol. 66, 123 (1997).CrossRefGoogle Scholar
7.Sánchez, F., Morenza, J.L., and Trtik, V., Appl. Phys. Lett. 75, 3303 (1999).CrossRefGoogle Scholar
8.Pedraza, A., Fowlkes, J.D., and Lowndes, D.H., Appl. Phys. A 69, S731 (1999).CrossRefGoogle Scholar
9.Usoskin, A., Freyhardt, H.C., and Krebs, H.U., Appl. Phys. A 69, S823 (1999).CrossRefGoogle Scholar
10.Oliveira, V., Conde, O., Vilar, R., and Freitas, P., J. Mater. Res. 12, 3206 (1997).CrossRefGoogle Scholar
11.Oliveira, V., Vilar, R., and Conde, O., Appl. Surf. Sci. 127/129, 831 (1998).CrossRefGoogle Scholar
12.JCPDS Card No. 32–1383 (International Centre for Diffraction Data, Swarthmore, PA, 1992).Google Scholar
13.JCPDS Card No. 42–1468 (International Centre for Diffraction Data, Swarthmore, PA, 1992).Google Scholar
14.JCPDS Card No. 41–258 (International Centre for Diffraction Data, Swarthmore, PA, 1992).Google Scholar
15.Cullity, B.D., Elements of X-Ray Diffraction, 2nd ed. (Addison Wesley Company, Reading, MA, 1978), pp. 102, 284.Google Scholar
16.Hofmann, S., J. Vac. Sci. Technol. A 4, 2789 (1986).CrossRefGoogle Scholar
17.Leinen, D., Lassaletta, G., Fernández, A., Caballero, A., González-Elipe, A.R., Martín, J.M., Vacher, B., J. Vac. Sci. Techol. A 14, 2842 (1996).CrossRefGoogle Scholar
18.Silvain, J.F., Barbier, J.E., and Lepetitcorps, Y., Surf. Coat. Technol. 61, 245 (1993).CrossRefGoogle Scholar