Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T11:26:40.507Z Has data issue: false hasContentIssue false

Cathodoluminescence study of defects created by Vickers indentation in hydrothermal ZnO crystals

Published online by Cambridge University Press:  31 January 2011

J. Mass
Affiliation:
Física de la Materia Condensada, ETSII, 47011 Valladolid, Spain; and Dpto. Matemáticas y Física, UniNorte, Km 5 Barranquilla, Colombia
M. Avella
Affiliation:
Física de la Materia Condensada, ETSII, 47011 Valladolid, Spain
J. Jiménez*
Affiliation:
Física de la Materia Condensada, ETSII, 47011 Valladolid, Spain
M. Callahan
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom Air Force Base, Massachusetts 01731
D. Bliss
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom Air Force Base, Massachusetts 01731
Buguo Wang
Affiliation:
Solid State Scientific Corporation, Hollis, New Hampshire 03049
*
a) Address all corresponding to this author. e-mail: [email protected]
Get access

Abstract

Vickers indentations of ZnO crystals grown by the hydrothermal method were studied by cathodoluminescence. The defects induced by indentation influenced the luminescence spectrum, indicating the generation of non radiative recombination centers and a band close to the first phonon replica of the free exciton, in the surrounding area near the indentation. The possible nature of the defects responsible for such band is discussed. A comparison with polishing induced damage is also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reschikov, M., Dogan, S., Avrutin, V., Cho, S.J.Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 2005CrossRefGoogle Scholar
2Look, D.C.: Electrical and optical properties of p-type ZnO. Semicond. Sci. Technol. 20, S55 2005CrossRefGoogle Scholar
3Sherriff, R.E., Reynolds, D.C., Look, D.C., Jogai, B., Hoelscher, J.E., Collins, T.C., Cantwell, G.Harsch, W.C.: Photoluminescence measurements from the two polar faces of ZnO. J. Appl. Phys. 88, 3454 2000CrossRefGoogle Scholar
4Ehrentraut, D., Sato, H., Kagamitani, Y., Sato, H., Yoshikawa, A.Fukuda, T.: Solvothermal growth of ZnO. Progress Cryst. Growth Charact. Mater. 52, 280 2006CrossRefGoogle Scholar
5Hamby, D.W., Lucca, D.A.Klopfstein, M.J.: Photoluminescence of mechanically polished ZnO. J. Appl. Phys. 97, 043504 2005CrossRefGoogle Scholar
6Mass, J., Avella, M., Jiménez, J., Callahan, M., Grant, E., Rakes, K., Bliss, D.Wang, B.: Cathodoluminescence study of visible luminescence in hydrothermal ZnO crystals. Appl. Phys. A 88, 95 2007CrossRefGoogle Scholar
7Czernuszka, J.T.Pratt, N.: Cathodoluminescence-mode imaging of dislocations in zinc oxide. Philos. Mag. Lett. 61, 83 1990CrossRefGoogle Scholar
8Bradby, J.E., Kucheyev, S.O., Williams, J.S., Jagadish, C., Swain, M.V., Munroe, P.Phillips, M.R.: Contact-induced defect propagation in ZnO. Appl. Phys. Lett. 80, 4537 2002CrossRefGoogle Scholar
9Takkouk, Z., Brihi, N., Guergouri, K.Marfaing, Y.: Cathodoluminescence study of plastically deformed bulk ZnO single crystal. Physica B 366, 185 2005CrossRefGoogle Scholar
10Coleman, V.A., Bradby, J.E., Jagadish, C.Phillips, M.R.: Observation of enhanced defect emission and excitonic quenching from spherically indented ZnO. Appl. Phys. Lett. 89, 082102 2006CrossRefGoogle Scholar
11Garcés, N.Y., Wang, L., Bai, L., Giles, N.C., Halliburton, L.E.Cantwell, G.: Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 81, 622 2002CrossRefGoogle Scholar
12Chichibu, S.F., Onuma, T., Kubota, M., Uedono, A., Sota, T., Tsukazaki, A., Ohtomo, A.Kawasaki, M.: Improvements in quantum efficiency of excitonic emissions in ZnO epilayers by the elimination of point defects. J. Appl. Phys. 99, 093505 2006CrossRefGoogle Scholar
13Hur, T.B., Jeen, G.S., Hwang, Y.H.Kim, H.K.: Photoluminescence of polycrystalline ZnO under different annealing conditions. J. Appl. Phys. 94, 5787 2003CrossRefGoogle Scholar
14Dadgar, A., Krtschil, A., Bertram, F., Giemsch, S., Hempel, T., Veit, P., Díez, A., Oleynik, N., Clos, R., Christen, J.Krost, A.: ZnO MOVPE growth: From local impurity incorporation towards p-type doping. Superlattices Microstruct. 38, 245 2005CrossRefGoogle Scholar
15Thonke, K., Gruber, Th., Teofilov, N., Schönfelder, R., Waag, A.Sauer, R.: Donor–acceptor pair transitions in ZnO substrate material. Physica B 308–310, 945 2001CrossRefGoogle Scholar
16Erhart, P.Albe, K.: Diffusion of zinc vacancies and interstitials in zinc oxide. Appl. Phys. Lett. 88, 201918 2006CrossRefGoogle Scholar
17Zubiaga, A., García, J.A., Plazaola, F., Tuomisto, F., Saarinen, K., Pérez, J. ZúñigaMuñoz-Sanjosé, V.: Correlation between Zn vacancies and photoluminescence emission in ZnO films. J. Appl. Phys. 99, 053516 2006CrossRefGoogle Scholar
18Kanaya, K.Okayama, S.: Penetration and energy-loss theory of electrons in solid targets. J. Phys. D: Appl. Phys. 5, 43 1972CrossRefGoogle Scholar