Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:03:10.551Z Has data issue: false hasContentIssue false

Carbon retention in YBa2Cu3O7–δ and its effect on the superconducting transition

Published online by Cambridge University Press:  31 January 2011

T. M. Shaw
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
D. Dimos
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
P. E. Batson
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
A. G. Schrott
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
D. R. Clarke
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
P. R. Duncombe
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

Magnetic susceptibility measurements are used to show that the superconducting transition temperature of yttrium barium cuprate is lowered by carbon trapped in the microstructure of dense polycrystalline materials during sintering. We show that carbon is retained in the material as a result of the porosity closing off during the sintering process. X-ray photoelectron spectroscopy and electron energy loss spectroscopy are used to show that the retained carbon forms a solid solution with YBa2Cu3O7–δ and resides in a barium carbonate-like configuration in the crystal structure. The origin of the lowering of the superconducting transition temperature and processing strategies for preventing carbon retention are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Beyers, R. and Shaw, T. M., “The Structure of 123 and its Derivatives” in Solid State Phys. 42, edited by Ehrenreich, H. and Turnbull, D., for a review of substitution effects.Google Scholar
2Barboux, P., Tarascon, J. M., Greene, L. H., Hull, G.W., and Bagley, B. G., J. Appl. Phys. 63 (8), 27252729 (1988).CrossRefGoogle Scholar
3McAlford, N., Clegg, W. J., Harmer, M.A., Birchall, J. D., Kendall, K., and Jones, D. H.. Nature 332, 58 (1988).CrossRefGoogle Scholar
4Clarke, D. R., Shaw, T. M., and Dimos, D., J. Am. Ceram. Soc. 72, 1103 (1989).CrossRefGoogle Scholar
5Schrott, A. G., Cohen, S. L., Dinger, T. R., Himpsel, F. J., Yarmoff, J.A., Frase, K.G., Park, S.I., and Purtell, R., in “Thin Film Processing and Characterization of High-Temperature Superconductors”, edited by Harper, J. M.E., Colton, R. J., and Feldman, L.C., AIP Conf. Proc. No. 165 (American Institute of Physics, New York, 1988), p. 349.Google Scholar
6Nakahara, S., Fisanick, G. J., Yan, M. F., van Dover, R. B., Boone, T., and Moore, R., J. Cryst. Growth 85 (4), 639651 (1987).CrossRefGoogle Scholar
7Batson, P. E. and Chisholm, M. (unpublished work).Google Scholar
8Roth, R. S., Rawn, C. J., Beech, F., and Anderson, J.O., in “Ceramic Superconductors II, Research Update”, edited by Yan, M. F. (American Ceramics Society, 1988), p. 1327.Google Scholar
9Batson, P. E., Rev. Sci. Instrum. 57, 43 (1986); and Rev. Sci. Instrum. 59, 1132 (1988).Google Scholar
10Heyman, R.V., Ross, D. K., and Elthon, D., Microbeam Analysis- 1989, edited by Russell, P. E. (San Francisco Press, Box 6800, San Francisco, CA, 1989), p. 468.Google Scholar
11Steiner, P., Kinsinger, V., Sander, I., Siegwart, B., Hufner, S., and Politis, C., Z. Phys. B 67, 19 (1987).Google Scholar
12Frisch, M. A., Holtzberg, F., and Kaiser, D. L., TUPAC, Chemistry of Oxide Superconductors, edited by Rao, C. N. R. (Blackwell Scientific Publications, London, 1988), p. 85.Google Scholar
13Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960).Google Scholar
14Roth, R. S. (private communication).Google Scholar
15Shafer, M.W., Penny, T., and Olsen, B., Phys. Rev. B 36, 4047 (1987).Google Scholar
16Gallagher, P. K., Grader, G.S., and O'Bryan, H. M., Mater. Res. Bull. 23 (10), 1491 (1988).CrossRefGoogle Scholar