Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T10:18:22.689Z Has data issue: false hasContentIssue false

Bulk amorphous Pd–Ni–Fe–P alloys: Preparation and characterization

Published online by Cambridge University Press:  31 January 2011

T. D. Shen
Affiliation:
Materials Science and Technology Division, MS K765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Y. He
Affiliation:
Materials Science and Technology Division, MS K765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. B. Schwarz
Affiliation:
Materials Science and Technology Division, MS K765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Bulk amorphous alloys of PdxNiyFe80−xyP20 (25 ≤ x ≤ 60, 20 ≤ y ≤ 55, x + y ≥ 60) were prepared by a flux-melting and water-quenching method. Seven-mm diameter glassy rods of Pd40Ni40−xFexP20 (0 ≤ x ≤ 20) were studied in greater detail. For these alloys, the difference between the crystallization and glass transition temperatures ranges from 102 K for x = 0 to 53 K for x = 20. In this composition range, the reduced glass transition temperature, Trg, ranges from 0.66 to 0.57. The change in density upon crystallization ranges from 0.24 ± 0.04% for x = 0 to 1.33 ± 0.24% for x = 10. The partial molar volume of Fe in amorphous Pd40Ni40−xFexP20 alloys is significantly larger than the molar volume of (metastable) fcc Fe. This, as well as a comparison with the molar volumes of crystalline compounds, suggests chemically selective Fe–Pd bonding in these glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, H. A., in Amorphous Metallic Alloys, edited by Luborsky, F. E. (Butterworth, London, 1983), p. 8.CrossRefGoogle Scholar
2.Turnbull, D., Contemporary Phys. 10, 473 (1969).CrossRefGoogle Scholar
3.Chen, H. S., Acta Metall. 22, 1505 (1974).Google Scholar
4.Kui, H. W., Greer, A. L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
5.Drehman, A. J., Greer, A. L., and Turnbull, D., Appl. Phys. Lett. 41, 716 (1982).CrossRefGoogle Scholar
6.Inoue, A., Mater. Trans. JIM 36, 866 (1995).CrossRefGoogle Scholar
7.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
8.He, Y., Schwarz, R. B., and Archuleta, J. I., Appl. Phys. Lett. 69, 1861 (1996).CrossRefGoogle Scholar
9.Inoue, A., Nishiyama, N., and Masumoto, T., Mater. Trans. JIM 37, 181 (1996).Google Scholar
10.He, Y., Shen, T. D., and Schwarz, R. B., Metall. Mater. Trans. A 29, 1795 (1998).CrossRefGoogle Scholar
11.Inoue, A., Mater. Sci. Eng. A 226–228, 357 (1997).CrossRefGoogle Scholar
12.Inoue, A., Zhang, T., and Takeuchi, A., Appl. Phys. Lett. 71, 464 (1997).Google Scholar
13.Inoue, A., Zhang, T., Itoi, T., and Takeuchi, A., Mater. Trans. JIM 38, 359 (1997).CrossRefGoogle Scholar
14.de Boer, F.R., Boom, R., Mattens, W.C. M., Miedema, A.R., and Niessen, A. K., Cohesion in Metals (North-Holland, Amsterdam, 1988).Google Scholar
15.Schwarz, R. B. and He, Y., Mater. Sci. Forum 235–238, 231 (1997).Google Scholar
16. SPEX Industries, Inc., 3880 Park Avenue, Edison, NJ 08820.Google Scholar
17. SCINTAG Inc., 10040 Bubb Road, Cupertino, CA 95014.Google Scholar
18. The Perkin-Elmer Corporation, 761 Main Avenue, Norwalk, CT 06859.Google Scholar
19.Schwarz, R. B. and Shen, T. D., Los Alamos National Laboratory (unpublished results, 1998).Google Scholar
20.Touloukian, Y.S., Powell, R.W., Ho, C. Y., and Klemens, P. G., in Thermophysical Properties of Matter, Vol. 2, Thermal Conductivity: Nonmetallic Solids (IFI/Plenum, New York and Washington, 1970).Google Scholar
21.Touloukian, Y.S. and Buyco, E. H., in Thermophysical Properties of Matter, Vol. 5, Specific Heat: Nonmetallic Solids (IFI/Plenum, New York and Washington, 1970).Google Scholar
22.Maitrepierre, P.L., J. Appl. Phys. 40, 4826 (1969).CrossRefGoogle Scholar
23.Inoue, A., Kitamura, A., and Masumoto, T., J. Mater. Sci. 18, 753 (1983).Google Scholar
24.Carini, J. P., Nagel, S.R., Varga, L. K., and Schmidt, T., Phys. Rev. B 27, 7589 (1983).CrossRefGoogle Scholar
25.Ivkov, J. and Babic, E., J. Phys. F: Met. Phys. 15, L161 (1985).CrossRefGoogle Scholar
26.Wachtel, E., Haggag, H., Gödecke, T., and Predel, B., Z. Metallkd. 76, 120 (1985).Google Scholar
27.Inoue, A., Kimura, H.M., Masumoto, T., Ekimoto, T., Masumoto, Y., and Miyake, N., Metall. Trans. A18, 377 (1987).CrossRefGoogle Scholar
28.Jiangfeng, J., Gonser, U., and Wagner, H. G., Z. Metallkd. 78, 767 (1987).Google Scholar
29.Donovan, P.E., Evans, P. V., and Greer, A. L., J. Mater. Sci. Lett. 5, 951 (1986).CrossRefGoogle Scholar
30.Miller, M.K., Larsen, D.J., Schwarz, R.B., and He, Y., Mater. Sci. Eng. A 250, 141 (1998).Google Scholar
31.Kui, H.W. and Turnbull, D., J. Non-Cryst. Solids 94, 62 (1987).CrossRefGoogle Scholar
32.Spaepen, F. and Turnbull, D., in Proceedings of 2nd International Conference on Rapidly Quenched Metals, edited by Grant, N. J. and Giessen, B. C. (MIT Press, Cambridge, MA, 1976), p. 205.Google Scholar
33.Greer, A.L., Nature 366, 303 (1993).Google Scholar
34.Turnbull, D., Scripta Metall. 11, 1131 (1977).Google Scholar
35.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1991).Google Scholar
36.Chen, H.S., Krause, J.T., and Sigety, E. A., J. Non-Cryst. Solids 13, 321 (1973/1974).Google Scholar
37.Dietrichs, J. and Frischat, G. H., Commun. Am. Ceram. Soc. 11, C233 (1984).Google Scholar
38.Wilde, G., Klose, S. G., Soellner, W., Goerler, G.P., Jeropoulus, K., Willnecker, R., and Fecht, H. J., Mater. Sci. Eng. A 226–228, 434 (1997).CrossRefGoogle Scholar