Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:52:38.988Z Has data issue: false hasContentIssue false

Bombarding energy dependence of bonding structure in amorphous carbon interlayer and its effect on diamond nucleation

Published online by Cambridge University Press:  31 January 2011

U. C. Oh
Affiliation:
Department of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Lu 30, Haidain Qu, Beijing 100083, People's Republic of China and Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hoyja Dong, Pohang, Kyungbuk 790–784, Republic of Korea
De Gang Cheng
Affiliation:
Department of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Lu 30, Haidain Qu, Beijing 100083, People's Republic of China
Fan Xiu Lu
Affiliation:
Department of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Lu 30, Haidain Qu, Beijing 100083, People's Republic of China
Jung Ho Je*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hoyja Dong, Pohang, Kyungbuk 790–784, Republic of Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The bombarding energy dependence of bonding structure in amorphous carbon interlayer and its effect on diamond nucleation density (Nd) were studied. Amorphous carbon (a-C) interlayer was deposited by magnetron sputtering. Interestingly, the intensity ratio (ID/IG) of the D band (∼1400 cm−1) to the G band (∼1570 cm−1) in the Raman spectra and the optical band gap of the a-C film were found to be inversely proportional to the sputtering power, that is, to bombarding energy. When diamond was subsequently deposited at 800 °C by microwave plasma chemical vapor deposition (CVD), diamond could be grown only on the interlayers with higher ID/IG (≥2.20), and Nd was increased up to 2 × 106/cm2 with the increase of ID/IG ratio, that is, with the decrease of the bombarding energy. We experimentally confirmed that the amount of the sp3 bonded carbon clusters within the interlayer was dependent on the bombarding energy of the particles, determining the diamond nucleation density. We suggest that the transformation of the amorphous carbon into graphitic carbon should be effectively prevented for the diamond nucleation on the a-C interlayer.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yarbrough, W.A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
2.Stoner, B.R., Ma, G-H.M, Wolter, S.D., and Glass, J.T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
3.Setaka, N. and Hyomen, , Surface 22, 110 (1984).Google Scholar
4.Nistor, L.C., Landuyt, J.V., Ralchenko, V.G., Smolin, A. A., Korotushenko, K.G., and Obraztsova, E. D., J. Mater. Res. 12, 2533 (1997).CrossRefGoogle Scholar
5.Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
6.Mitsuda, Y., Kojima, Y., Yoshida, T., and Akashi, K., J. Mater. Sci. 22, 1557 (1987).CrossRefGoogle Scholar
7.Bachmann, P.K., Drawl, W., Knight, D., Weimer, R., and Messier, R. F., in Diamond and Diamond Like Materials Synthesis: Extended Abstracts, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Mater. Res. Soc., Pittsburgh, PA, 1988), p. 99.Google Scholar
8.Maeda, H., Masuda, S., Kusakabe, K., and Morooka, S., J. Cryst. Growth 121, 507 (1992).CrossRefGoogle Scholar
9.Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
10.Sheldon, B.W., Csencsits, R., Rankin, J., Boekenhauer, R. E., and Shigesato, Y., J. Appl. Phys. 75, 5001 (1994).CrossRefGoogle Scholar
11.Ravi, K.V., Koch, C.A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).CrossRefGoogle Scholar
12.Hartnett, T., Miller, R., Montanari, D., Willingham, C., and Tustison, R., J. Vac. Sci. Technol. A 8, 2129 (1990).CrossRefGoogle Scholar
13.Godbole, V.P. and Narayan, J., J. Mater. Res. 7, 2785 (1992).CrossRefGoogle Scholar
14.Nistor, L.C., Landuyt, J.V., Ralchenko, V. G., Kononenko, T. V., Obarztsova, E. D., and Strelnitsky, V. E., Appl. Phys. A58, 137 (1994).CrossRefGoogle Scholar
15.Dubray, J. J., Pantano, C. G., Meloncelli, M., and Bertran, E., J. Vac. Sci. Technol A 9, 3012 (1991).CrossRefGoogle Scholar
16.Morrishi, A.A. and Pehrsson, P.E., Appl. Phys. Lett. 59, 417 (1991).CrossRefGoogle Scholar
17.Feng, Z., Komvopoulos, K., Brown, I.G., and Bogy, D.B., J. Mater. Res. 9, 2148 (1994).CrossRefGoogle Scholar
18.Feng, Z., Brewer, M. A., Komvopoulos, K., Brown, I. G., and Bogy, D.B., J. Mater. Res. 10, 165 (1995).CrossRefGoogle Scholar
19.Feng, Z., Brewer, M. A., Bogy, D. B., Ager, J. W. III, Anders, S., Wang, Z., and Brown, I.G., J. Appl. Phys. 79, 485 (1996).CrossRefGoogle Scholar
20.Ong, T.P., Xiong, F., Chang, R. P. H., and White, C.W., J. Mater. Res. 7, 2429 (1992).CrossRefGoogle Scholar
21.Feng, Z., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Appl. Phys. 74, 2841 (1993).CrossRefGoogle Scholar
22.Meilunas, R.J., Chang, R.P. H., Liu, S., and Kappes, M. M., Appl. Phys. Lett. 59, 3461 (1991).CrossRefGoogle Scholar
23.Shing, Y.H., Pool, F. S., and Rich, D. H., Thin Solid Films 212, 150 (1992).CrossRefGoogle Scholar
24.Yehoda, J. E., Fuentes, R. I., Tsang, J. C., Whitehair, S. J., Guarnieri, C. R., and Cuomo, J. J., Appl. Phys. Lett. 60, 2865 (1992).CrossRefGoogle Scholar
25.Shimada, Y., Mutsukura, N., and Machi, Y., Jpn. J. Appl. Phys. 31, 1958 (1992).CrossRefGoogle Scholar
26.Godbole, V. P. and Narayan, J., J. Appl. Phys. 71, 4944 (1992).CrossRefGoogle Scholar
27.Singh, J. and Vellaikal, M., Surf. Coat. Technol. 64, 131 (1994).CrossRefGoogle Scholar
28.Kirkpatrick, A. R., Ward, B.W., and Economou, N.P., J. Vac. Sci. Technol. B 7, 1947 (1989).CrossRefGoogle Scholar
29.Lin, S.J., Lee, S. L., Hwang, J., Chang, C.S., and Wen, H. Y., Appl. Phys. Lett. 60, 1559 (1992).CrossRefGoogle Scholar
30.Dubray, J. J., Yarbrough, W.A., and Pantano, C.G., in Proceedings of the NATO-ASI on Diamond and Diamondlike Films and Coatings, edited by Clausing, B., Angus, J., Koidal, P., and Horton, L. (Plenum, New York, 1991).Google Scholar
31.Tamaki, K., Watanabe, Y., Nakamura, Y., and Hirayama, S., Thin Solid Films 236, 115 (1993).CrossRefGoogle Scholar
32.Grannen, K. J. and Chang, R. P. H., J. Mater. Res. 9, 2154 (1994).CrossRefGoogle Scholar
33.Yu, Z-M., Rogelet, T., and Flodströöm, S. A., J. Appl. Phys. 74, 7235 (1993).CrossRefGoogle Scholar
34.Bubenzer, A., Dischler, B., Brandt, G., and Koidl, P., J. Appl. Phys. 54, 4590 (1983).CrossRefGoogle Scholar
35.Koponen, I., Hakovirta, M., and Lappalainen, R., J. Appl. Phys. 78, 5837 (1995).CrossRefGoogle Scholar
36.Yang, W.S., Kim, T. S., and Je, J. H., J. Mater. Res. 13, 596 (1998).CrossRefGoogle Scholar
37.McGinnis, S. P., Kelly, M. A., Hagstom, S. B., and Alvis, R. L., J. Appl. Phys. 79, 170 (1996).CrossRefGoogle Scholar
38.Tamor, M. A. and Vassell, W.C., J. Appl. Phys. 76, 3823 (1994).CrossRefGoogle Scholar
39.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
40.Wagner, J., Ramsteiner, M., Wild, Ch., and Koidl, P., Phys. Rev. B 40, 1817 (1989).CrossRefGoogle Scholar
41.Yoshikawa, M., Katagiri, G., Ishida, H., Ishitani, A., and Akamatsu, T., in Science and Technology of New Diamond, edited by Saito, S., Fukunaga, O., and Toshikawa, M. (Terra Scientific Publishing Company, Tokyo, 1990), p. 445.Google Scholar
42.Lim, P. K., Gaspari, F., and Zukotynski, S., J. Appl. Phys. 78, 5307 (1995).CrossRefGoogle Scholar
43.Palshin, V., Meletis, E. I., Ves, S., and Logothetidis, S., Thin Solid Films 270, 165 (1995).CrossRefGoogle Scholar
44.Wada, N., Gaczi, P. J., and Solin, S. A., J. Non-Cryst. Solids 35 & 36, 543 (1980).CrossRefGoogle Scholar
45.Robertson, J. and O'Reilly, E. P., Phys. Rev. B 35, 2946 (1987).CrossRefGoogle Scholar
46.Robertson, J., Surf. Coat. Technol. 50, 185 (1992).CrossRefGoogle Scholar
47.Seth, J., Padiyath, R., and Babu, S. V., Diamond and Related Materials 3, 210 (1994).CrossRefGoogle Scholar
48.Lion, Y., Inspector, A., Reimer, R., Knight, D., and Messier, R., J. Mater. Res. 5, 2305 (1990).Google Scholar
49.Tsai, H. and Bogy, D. B., J. Vac. Sci. Technol. A5, 3287 (1987).CrossRefGoogle Scholar