Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T10:31:09.906Z Has data issue: false hasContentIssue false

Biomolecular sensing using gold nanoparticle–coated ZnO nanotetrapods

Published online by Cambridge University Press:  11 August 2011

Ramakrishna Podila
Affiliation:
Department of Physics and Astronomy, Center for Optical Material Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634
Pengyu Chen
Affiliation:
Laboratory of Single-Molecule Biophysics and Polymer Physics, Clemson University, Clemson, South Carolina 29634
Jason Reppert
Affiliation:
Department of Physics and Astronomy, Center for Optical Material Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634
Apparao M. Rao*
Affiliation:
Department of Physics and Astronomy, Center for Optical Material Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634
Pu Chun Ke*
Affiliation:
Department of Physics and Astronomy, Center for Optical Material Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634; and Laboratory of Single-Molecule Biophysics and Polymer Physics, Clemson University, Clemson, South Carolina 29634
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Gold nanoparticle–coated ZnO tetrapods have been utilized as a substrate for the detection of fluorescently labeled protein tetramethylrhodamine isothiocyanate bovine serum albumin and phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(Lissamine rhodamine B sulfonyl) down to the concentrations of 15 pM and 79 nM, respectively. Our detection scheme is based on enhanced fluorescence excitation of the biomolecular analytes by the surface plasmon polaritons of gold nanoparticles coated on the ZnO tetrapod whiskers. This enhanced excitation is confirmed using COMSOL Multiphysics, where the optical near field is shown to be dependent on the coating density of the gold nanoparticles and branching of the ZnO nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gu, Y., Zhou, J., Mai, W., Dai, Y., Bao, G., and Wang, Z.L.: Measuring the transport property of ZnO tetrapod using in situ nanoprobes. Chem. Phys. Lett. 484, 96 (2010).CrossRefGoogle Scholar
2.Kumar, S.A. and Chen, S.M.: Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications. Anal. Lett. 41, 141 (2008).CrossRefGoogle Scholar
3.Carter, D.C. and Ho, J.X.: Structure of serum albumin. Adv. Protein Chem. 45, 153 (1994).CrossRefGoogle ScholarPubMed
4.Podila, R., Queen, W., Nath, A., Fazzio, A., Schonalez, A., He, J., Dalpian, G., Skove, M.J., Hwu, S.J., and Rao, A.M.: Origin of FM in pristine micro- and nanostructured ZnO. Nano Lett. 10, 1380 (2010).CrossRefGoogle ScholarPubMed
5.Lee, J-H., Leu, I.-C., Chung, Y.-W., and Hon, M-H.: Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process. Nanotechnology 17, 4445 (2006).CrossRefGoogle Scholar
6.Shao, M-W., Yao, H., Zhang, M.-L., Wong, N.-B., Shan, Y.-Y., and Lee, S-T.: Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Appl. Phys. Lett. 87, 183106 (2005).CrossRefGoogle Scholar
7.Richard, C., Balavoine, F., Schultz, P., Ebbesen, T.W., and Mioskowski, C.: Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775 (2003).CrossRefGoogle ScholarPubMed
8.Ke, P.C.: Fiddling the string of carbon nanotubes with amphiphiles. Phys. Chem. Chem. Phys. 9, 439 (2007).Google ScholarPubMed
9.Qiao, R. and Ke, P.C.: Lipid-carbon nanotube self-assembly in aqueous solution. J. Am. Chem. Soc. 128, 13656 (2007).CrossRefGoogle Scholar
10.Wu, Y., Hudson, J.S., Lu, Q., Moore, J.M., Mount, A.S., Rao, A.M., Alexov, E., and Ke, P.C.: Coating single-walled carbon nanotubes with phospholipids. J. Phys. Chem. B 110, 2475 (2006).CrossRefGoogle ScholarPubMed
11.Lin, S., Keskar, G., Wu, Y., Wang, X., Mount, A.S., Klaine, S.J., Moore, J.M., Rao, A.M., and Ke, P.C.: Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Appl. Phys. Lett. 89, 143118 (2006).CrossRefGoogle Scholar
12.Papavassiliou, G.C.: Optical properties of small inorganic and organic metal particles. Prog. Solid State Chem. 12, 185 (1980).CrossRefGoogle Scholar
13.Vernon, K.C., Funston, A.M., Novo, C., Gómez, D.E., Mulvaney, P., and Davis, T.J.: Influence of particle−substrate interaction on localized plasmon resonances. Nano Lett. 10, 2080 (2010).CrossRefGoogle ScholarPubMed
14.Link, S. and El-Sayed, M.A.: Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 103, 8410 (1999).CrossRefGoogle Scholar
15.Li, C., Li, L., Du, Z., Yu, H., Xiang, Y., Li, Y., Cai, Y., and Wang, T.: Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology 19, 035501 (2008).CrossRefGoogle ScholarPubMed
16.Johnson, P.B. and Christie, R.W.: Optical constants of the noble metals. Phys. Rev. B: Condens. Matter 6, 4370 (1972).CrossRefGoogle Scholar
17.Chen, P., Gan, Q., Bartoli, F., and Zhu, L.: Spoof-surface-plasmon assisted light beaming in mid-infrared. J. Opt. Soc. Am. B: Opt. Phys. 27, 685 (2010).CrossRefGoogle Scholar