Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T08:58:00.424Z Has data issue: false hasContentIssue false

Bioinspired synthesis of self-assembled calcium phosphate nanocomposites using block copolymer-peptide conjugates

Published online by Cambridge University Press:  31 January 2011

Yusuf Yusufoglu
Affiliation:
Ames Laboratory, Ames, Iowa 50011
Yanyan Hu
Affiliation:
Ames Laboratory, Ames, Iowa 50011
Mathumai Kanapathipillai
Affiliation:
Ames Laboratory, Ames, Iowa 50011
Matthew Kramer
Affiliation:
Ames Laboratory, Ames, Iowa 50011
Yunus E. Kalay
Affiliation:
Ames Laboratory, Ames, Iowa 50011
P. Thiyagarajan
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Mufit Akinc
Affiliation:
Ames Laboratory, Ames, Iowa 50011
Klaus Schmidt-Rohr
Affiliation:
Ames Laboratory, Ames, Iowa 50011
Surya Mallapragada*
Affiliation:
Ames Laboratory, Ames, Iowa 50011
*
b)Address all correspondence to this author. [email protected]
Get access

Abstract

Thermoreversibly gelling block copolymers conjugated to hydroxyapatite-nucleating peptides were used to template the growth of inorganic calcium phosphate in aqueous solutions. Nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), transmission electron microscopy, x-ray diffraction, and small-angle scattering were used to characterize these samples and confirm that the peptides promoted the growth of hydroxyapatite as the inorganic phase. Three different polymer templates were used with varying charges on the polymer chains (nonionic, anionic, and zwitterionic), to investigate the role of charge on mineralization. All of the polymer-inorganic solutions exhibited thermoreversible gelation above room temperature. Nanocomposite formation was confirmed by solid-state NMR, and several methods identified the inorganic component as hydroxyapatite. Small angle x-ray scattering and electron microscopy showed thin, elongated crystallites. Thermogravimetric analysis showed an inorganic content of 30–45 wt% (based on the mass of the dried gel at ∼200 °C) in the various samples. Our work offers routes for bioinspired bottom-up approaches for the development of novel, self-assembling, injectable nanocomposite biomaterials for potential orthopedic applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aizenberg, J.: Crystallization in patterns: A bio-inspired approach. Adv. Mater. 16, 1295 2004CrossRefGoogle Scholar
2Arias, J.L., Neira-Carrillo, A., Arias, J.I., Escobar, C., Bodero, M., David, M., Fernandez, M.S.: Sulfated polymers in biological mineralization: A plausible source for bio-inspired engineering. J. Mater. Chem. 14, 2154 2004CrossRefGoogle Scholar
3Smith, B.L., Paloczi, G.T., Hansma, P.K., Levine, R.P.: Discerning nature’s mechanism for making complex biocomposite crystals. J. Cryst. Growth 211, 116 2000CrossRefGoogle Scholar
4Tang, Z.Y., Kotov, N.A., Magonov, S., Ozturk, B.: Nanostructured artificial nacre. Nat. Mater. 2, 413 2003CrossRefGoogle ScholarPubMed
5Aizawa, M., Ueno, H., Itatani, K., Okada, I.: Synthesis of calcium deficient apatite fibers by a homogeneous precipitation method and their characterization. J. Eur. Ceram. Soc. 26, 501 2006CrossRefGoogle Scholar
6Bellomo, E.G., Deming, T.: Monoliths of aligned silica-polypeptide hexagonal platelets. JACS 128, 2276 2006CrossRefGoogle ScholarPubMed
7Cha, J.N., Stucky, G.D., Morse, D.E., Deming, T.J.: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289 2000CrossRefGoogle ScholarPubMed
8Falini, G., Gazzano, M., Ripamonti, A.: Control of architectural assembly of octacalcium phosphate crystals in denatured collageneous matrices. J. Mater. Chem. 10, 535 2000CrossRefGoogle Scholar
9Sumerel, J.L., Yang, W., Kisailus, D., Weaver, J.C., Choi, J.H., Morse, D.E.: Biocatalytically templated synthesis of titanium dioxide. Chem. Mater. 15, 4804 2003CrossRefGoogle Scholar
10Bansal, V., Rautaray, D., Bharde, A., Ahire, K., Sanyal, A., Ahmad, A., Sastry, M.: Fungus mediated biosynthesis of silica and titania particles. J. Mater. Chem. 15, 2583 2005CrossRefGoogle Scholar
11Rusu, V.M., Ng, C.H., Wilke, M., Tiersch, B., Fratzl, P., Peter, M.G.: Size controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26, 5414 2005CrossRefGoogle ScholarPubMed
12Song, J., Malathong, V., Bertozzi, C.R.: A bottom-up approach for the development of artificial bone. JACS 127, 3366 2005CrossRefGoogle ScholarPubMed
13Song, J., Saiz, E., Bertozzi, C.R.: An efficient process towards 3-dimensional bone-like composites. JACS 125, 1236 2003CrossRefGoogle Scholar
14Song, J., Saiz, E., Bertozzi, C.R.: Preparation of PHEMA-CP composites with high interfacial adhesion via template driven mineralization. J. Eur. Ceram. Soc. 23, 2905 2003CrossRefGoogle Scholar
15Xu, G., Aksay, I., Groves, J.T.: Continuous crystalline carbonate apatite thin films. JACS 123, 2196 2001CrossRefGoogle ScholarPubMed
16Enlow, D., Rawal, A., Kanapathipillai, M., Schmidt-Rohr, K., Mallapragada, S., Lo, C.T., Thiyagarajan, P., Akinc, M.: Synthesis and characterization of self-assembled block copolymer templated calcium phosphate nanocomposite gels. J. Mater. Chem. 17, 1570 2007CrossRefGoogle Scholar
17Chang, S., Chen, H., Liu, J., Wood, D., Bentley, P., Clarkson, B.: Synthesis of a potentially bioactive hydroxyapatite nucleating molecule. Calcif. Tissue Int. 78, 55 2006CrossRefGoogle ScholarPubMed
18Determan, M., Seifert, S., Thiyagarajan, P., Mallapragada, S.K.: Synthesis and characterization of temperature and pH-sensitive self assembling pentablock copolymers. Polymer (Guildf.) 46, 6933 2005CrossRefGoogle Scholar
19Kanapathipillai, M., Yusufoglu, Y., Rawal, A., Hu, Y-Y., Lo, C.T., Thiyagarajan, P., Kalay, Y., Akinc, M.A., Mallapragada, S.K., Schmidt-Rohr, K.: Ionic block copolymer template directed calcium phosphate nanocomposites. Chem. Mater. 2008 in pressCrossRefGoogle Scholar
20Lutz, J-F., Boerner, H.G., Weichenhan, K.: Combining atom transfer radical polymerization and click chemistry: A versatile method for the preparation of end-functional polymers. Macromol. Rapid Commun. 26, 514 2005CrossRefGoogle Scholar
21Zeng, F., Lee, H., Allen, C.: Epidermal growth factor-conjugated poly(ethylene glycol)-block- poly(d-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjugate Chem. 17, 399 2006CrossRefGoogle Scholar
22Bali, D., King, L., Kim, S.: Syntheses of new gramicidin a derivatives. Aust. J. Chem. 56, 293 2003CrossRefGoogle Scholar
23Coessens, V., Nakagawa, Y., Matyjaszewski, K.: Synthesis of azido end-functionalized polyacrylates via atom-transfer radical polymerization. Polym. Bull. 40, 135 1998CrossRefGoogle Scholar
24Schmidt-Rohr, K.: Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-seperation nmr spectroscopy. Macromolecules 25, 3273 1992CrossRefGoogle Scholar
25Elliott, J.C.: Studies in inorganic chemistry in Structure and Chemistry of the Apatites and Other Calcium Orthophosphates Vol. 18, Elsevier Amsterdam, The Netherlands 1994 404CrossRefGoogle Scholar
26Dorozhkin, S.V.: Calcium orthophosphates. J. Mater. Sci. 42, 1061 2007CrossRefGoogle Scholar
27Yusufoglu, Y., Akinc, M.: Effect of pH on the carbonate incorporation into the hydroxyapatite prepared by an oxidative decomposition of calcium-edta chelate. J. Am. Ceram. Soc. 91, 77 2008CrossRefGoogle Scholar
28Kumar, M., Dasarathy, H., Riley, C.: Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. J. Biomed. Mater. Res. 45, 302 19993.0.CO;2-A>CrossRefGoogle ScholarPubMed
29Stulajterova, R., Medvecky, L.: Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions. Colloids Surf, A 316, 104 2008CrossRefGoogle Scholar
30Liao, S., Watari, F., Uo, M., Ohkawa, S., Tamura, K., Wang, W., Cui, F.: The preparation and characteristics of a carbonated hydroxyapatite/collagen composite at room temperature. J. Biomed. Mater. Res. Part B: Appl. Biomaterials 74, 817 2005CrossRefGoogle ScholarPubMed
31Vallet-Regi, M., Gonzalez-Calbet, J.M.: Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32, 1 2004CrossRefGoogle Scholar
32Hutchens, S.A., Benson, R.S., Evans, B.R., O’Neill, H.M., Rawn, C.J.: Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27, 4661 2006CrossRefGoogle Scholar
33Li, Z., Li, Y., Yang, A., Peng, X., Wang, X., Xiang, Z.: Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J. Mater. Sci.-Mater. Med. 16, 213 2005CrossRefGoogle ScholarPubMed
34Lai, C., Tang, S., Wang, Y., Wei, K.: Formation of calcium phosphate nanoparticles in reverse microemulsions. Mater. Lett. 59, 210 2004CrossRefGoogle Scholar
35Landi, E., Celotti, G., Logroscino, G., Tampieri, A.: Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc. 23, 2931 2003CrossRefGoogle Scholar
36Barralet, J., Knowles, J.C., Best, S., Bonfield, W.: Thermal decomposition of synthesized carbonate hydroxyapatite. J. Mater. Sci.-Mater. Med. 13, 529 2002CrossRefGoogle ScholarPubMed
37Feng, B., Chen, J.Y., Qi, S.K., He, L., Zhao, J.Z., Zhang, X.D.: Carbonate apatite coating on titanium induced rapidly by precalcification. Biomaterials 23, 173 2001CrossRefGoogle Scholar
38Murphy, W.L., Mooney, D.J.: Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. JACS 124, 1910 2002CrossRefGoogle ScholarPubMed
39Sato, K.: Inorganic-organic interfacial interactions in hydroxyapatite mineralization processes. Top. Curr. Chem. 270, 127 2007CrossRefGoogle Scholar
40Dorozhkin, S.V.: In vitro mineralization of silicon containing calcium phosphate bioceramics. JACS 90, 244 2007Google Scholar
41Manjubala, I., Scheler, S., Bossert, J., Klaus, D. Jandt: Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater. 2, 75 2006CrossRefGoogle ScholarPubMed
42Coates, J.P.: The interpretation of infrared spectra: Published reference sources. Appl. Spectrosc. Rev. 31, 179 1996CrossRefGoogle Scholar
43Krishna, D.S.R., Siddharthan, A., Seshadri, S.K., Kumar, T.S.S.: A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J. Mater. Sci.-Mater. Med. 18, 1735 2007CrossRefGoogle Scholar
44Suchanek, W.L., Shuk, P., Byrappa, K., Riman, R.E., TenHuisen, K.S., Janas, V.F.: Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23, 699 2001CrossRefGoogle Scholar
45Tadic, D., Epple, M.: A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25, 987 2004CrossRefGoogle ScholarPubMed
46Rothwell, W.P., Waugh, J.S., Yesinowski, J.P.: High-resolution variable-temperature phosphorus-31 NMR of solid calcium phosphates. JACS 102, 2637 1980CrossRefGoogle Scholar
47Yesinowski, J.P., Eckert, H.: Hydrogen environments in calcium phosphates: Proton MAS NMR at high spinning speeds. JACS 109, 6274 1987CrossRefGoogle Scholar
48Hou, S.S., Beyer, F.L., Schmidt-Rohr, K.: High-sensitivity multinuclear nmr spectroscopy of a smectite clay and of clay-intercalated polymer. Solid State Nucl. Magn. Reson. 22, 110 2002CrossRefGoogle ScholarPubMed
49Fratzl, P., Fratzl-Zelman, N., Klaushofer, K., Vogl, G., Koller, K.: Nucleation and growth of mineral crystals in bone studied by small-angle x-ray scattering. Calcif. Tissue Int. 48, 407 1991CrossRefGoogle ScholarPubMed
50Su, X., Sun, K., Cui, F.Z., Landis, W.J.: Organization of apatite crystals in human woven bone. Bone 32, 150 2003CrossRefGoogle ScholarPubMed
51Kikuchi, M., Ikoma, T., Itoh, S., Matsumoto, H.N., Koyama, Y., Takakuda, K., Shinomiya, K., Tanaka, J.: Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Compos. Sci. Technol. 64, 819 2004CrossRefGoogle Scholar