Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T07:47:02.978Z Has data issue: false hasContentIssue false

Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system

Published online by Cambridge University Press:  12 June 2018

Hamed Nosrati
Affiliation:
Student Research Center, Zanjan University of Medical Sciences, Zanjan 009824, Iran; and Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 009824, Iran
Elham Javani
Affiliation:
Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 009824, Iran
Marziyeh Salehiabar
Affiliation:
Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 009824, Iran
Hamidreza Kheiri Manjili
Affiliation:
Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 009824, Iran
Soodabeh Davaran
Affiliation:
Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 009841, Iran
Hossein Danafar*
Affiliation:
Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 009824, Iran; and Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 009824, Iran
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this project, we described the production of chrysin-loaded L-phenyl alanine (Phe)-coated iron oxide magnetic nanoparticles (chrysin@Phe@IOMNs). chrysin@Phe@IOMNs were characterized by X-ray diffraction, thermogravimetric analysis, fourier transform infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy techniques. Next, hemocompatibility and biocompatibility of Phe-coated IOMNs were determined by hemolysis and MTT assays on HFF-2 and HEK-293 cell lines, respectively. Finally, the anticancer activity of chrysin@Phe@IOMNs was examined on MCF-7 cell line. The outcomes direct that as-prepared nanocarriers are nontoxic and biocompatible and also chrysin@Phe@IOMNs are appropriate for chrysin delivery and other hydrophobic therapeutic agents.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babaie, S., Ghanbarzadeh, S., Davaran, S., Kouhsoltani, M., Hamishehkar, H.: Nanoethosomes for dermal delivery of Lidocaine. Adv. Pharm. Bull. 5, 549 (2015).Google Scholar
Nosrati, H., Sefidi, N., Sharafi, A., Danafar, H., and Manjili, H.K.: Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem. 76, 501 (2018).Google Scholar
Zheng, H., Li, S., Pu, Y., Lai, Y., He, B., and Gu, Z.: Nanoparticles generated by PEG-chrysin conjugates for efficient anticancer drug delivery. Eur. J. Pharm. Biopharm. 87, 454 (2014).Google Scholar
Cristescu, R., Visan, A., Socol, G., Surdu, A., Oprea, A., Grumezescu, A., Chifiriuc, M., Boehm, R., Yamaleyeva, D., and Taylor, M.: Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study. Appl. Surf. Sci. 374, 290 (2016).Google Scholar
Babu, K.S., Babu, T.H., Srinivas, P., Kishore, K.H., Murthy, U., and Rao, J.M.: Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett. 16, 221 (2006).Google Scholar
Anari, E., Akbarzadeh, A., and Zarghami, N.: Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif. Cells, Nanomed., Biotechnol. 44, 1410 (2016).Google Scholar
Vatten, L.J. and Kvinnsland, S.: Prospective study of height, body mass index and risk of breast cancer. Acta Oncol. 31, 195 (1992).Google Scholar
Ursin, G., Longnecker, M.P., Haile, R.W., and Greenland, S.: A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiology, 6, 137 (1995).CrossRefGoogle ScholarPubMed
Matsumura, Y. and Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Part 1), 6387 (1986).Google ScholarPubMed
Ghanbarzadeh, S., Khorrami, A., Arami, S.: Preparation of optimized Naproxen nano liposomes using response surface methodology. J. Pharm. Inv. 44, 33 (2014).Google Scholar
Salehiabar, M., Nosrati, H., Javani, E., Aliakbarzadeh, F., Manjili, H.K., Davaran, S., and Danafar, H.: Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol. 115, 83 (2018).Google Scholar
Ghanbarzadeh, S., Khorrami, A., Arami, S.: Nonionic surfactantbased vesicular system for transdermal drug delivery. Drug Deliv. 22, 1071 (2015).Google Scholar
Nosrati, H., Rashidi, N., Danafar, H., and Manjili, H.K.: Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym. Mater. 28, 1178 (2018).Google Scholar
Aberoumandi, S.M., Mohammadhosseini, M., Abasi, E., Saghati, S., Nikzamir, N., Akbarzadeh, A., Panahi, Y., and Davaran, S.: An update on applications of nanostructured drug delivery systems in cancer therapy: A review. Artif. Cells, Nanomed., Biotechnol. 45, 1058 (2017).CrossRefGoogle ScholarPubMed
Ahmadkhani, L., Akbarzadeh, A., and Abbasian, M.: Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems. Artif. Cells, Nanomed., Biotechnol. (2017). doi: 10.1080/21691401.2017.1360323.Google Scholar
Shaabani, A., Nosrati, H., and Seyyedhamzeh, M.: Cellulose@ Fe2O3 nanoparticle composites: Magnetically recyclable nanocatalyst for the synthesis of 3-aminoimidazo [1,2-a] pyridines. Res. Chem. Intermed. 41, 3719 (2015).Google Scholar
Shaabani, A., Boroujeni, M.B., and Laeini, M.S.: Copper(II) supported on magnetic chitosan: A green nanocatalyst for the synthesis of 2,4,6-triaryl pyridines by C–N bond cleavage of benzylamines. RSC Adv. 6, 27706 (2016).Google Scholar
Arami, H., Khandhar, A., Liggitt, D., and Krishnan, K.M.: In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576 (2015).Google Scholar
Mahmoudi, M., Serpooshan, V., and Laurent, S.: Engineered nanoparticles for biomolecular imaging. Nanoscale 3, 3007 (2011).Google Scholar
Pan, Y., Du, X., Zhao, F., and Xu, B.: Magnetic nanoparticles for the manipulation of proteins and cells. Chem. Soc. Rev. 41, 2912 (2012).Google Scholar
Salehiabar, M., Nosrati, H., Davaran, S., Danafar, H., and Manjili, H.K.: Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res. 68, 280 (2018).Google Scholar
Li, Z., Qiang, L., Zhong, S., Wang, H., and Cui, X.: Colloids and Surfaces A: Physicochemical and Engineering Aspects. 436, 1145 (2013).CrossRefGoogle Scholar
Rostami, M., Aghajanzadeh, M., Zamani, M., Manjili, H.K., and Danafar, H.: Sono-chemical synthesis and characterization of Fe3O4@ mTiO2–GO nanocarriers for dual-targeted colon drug delivery. Res. Chem. Intermed. 44, 1889 (2018).Google Scholar
Martín, M., Salazar, P., Villalonga, R., Campuzano, S., Pingarrón, J.M., and González-Mora, J.L.: Preparation of core–shell Fe3O4@poly (dopamine) magnetic nanoparticles for biosensor construction. J. Mater. Chem. B 2, 739 (2014).Google Scholar
Sousa, M., Rubim, J., Sobrinho, P., and Tourinho, F.: Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J. Magn. Magn. Mater. 225, 67 (2001).Google Scholar
Park, J.Y., Choi, E.S., Baek, M.J., and Lee, G.H.: Colloidal stability of amino acid coated magnetite nanoparticles in physiological fluid. Mater. Lett. 63, 379 (2009).Google Scholar
Patel, D., Chang, Y., and Lee, G.H.: Amino acid functionalized magnetite nanoparticles in saline solution. Curr. Appl. Phys. 9, S32 (2009).Google Scholar
Schwaminger, S.P., García, P.F., Merck, G.K., Bodensteiner, F.A., Heissler, S., Günther, S., and Berensmeier, S.: Nature of interactions of amino acids with bare magnetite nanoparticles. J. Phys. Chem. C 119, 23032 (2015).Google Scholar
Pušnik, K., Peterlin, M., Kralj-Cigic, I., Marolt, G., Kogej, K., Mertelj, A., Gyergyek, S., and Makovec, D.: Adsorption of amino acids, aspartic acid and lysine onto iron-oxide nanoparticles. J. Phys. Chem. C 120, 14372 (2016).Google Scholar
Nosrati, H., Salehiabar, M., Attari, E., Davaran, S., Danafar, H., and Manjili, H.K.: Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem. 32, e4069 (2018).Google Scholar
Nosrati, H., Mojtahedi, A., Danafar, H., and Kheiri Manjili, H.: Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J. Biomed. Mater. Res., Part A 106, 1646 (2018).Google Scholar
Rahimi, M., Shojaei, S., Safa, K.D., Ghasemi, Z., Salehi, R., Yousefi, B., and Shafiei-Irannejad, V.: Biocompatible magnetic tris(2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J. Chem. 41, 2160 (2017).Google Scholar
Qu, H., Ma, H., Zhou, W., and O’Connor, C.J.: In situ surface functionalization of magnetic nanoparticles with hydrophilic natural amino acids. Inorg. Chim. Acta 389, 60 (2012).CrossRefGoogle Scholar
Durmus, Z., Kavas, H., Toprak, M.S., Baykal, A., Altınçekiç, T.G., Aslan, A., Bozkurt, A., and Coşgun, S.: L-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. J. Alloys Compd. 484, 371 (2009).Google Scholar
Xie, J., Wang, J., Niu, G., Huang, J., Chen, K., Li, X., and Chen, X.: Human serum albumin coated iron oxide nanoparticles for efficient cell labeling. Chem. Commun. 46, 433 (2010).Google Scholar