Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T08:07:40.361Z Has data issue: false hasContentIssue false

Band structure and transport studies of half Heusler compound DyPdBi: An efficient thermoelectric material

Published online by Cambridge University Press:  05 April 2016

S. Krishnaveni*
Affiliation:
Department of Physics, Sathyabama University, Chennai 600119, India
M. Sundareswari
Affiliation:
Department of Physics, Sathyabama University, Chennai 600119, India
P.C. Deshmukh
Affiliation:
Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
S.R. Valluri
Affiliation:
Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada; and Department of Economics, Business and Mathematics, Kings University College, London, Ontario N6A 2M3, Canada
Ken Roberts
Affiliation:
Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The discovery of Heusler alloys has revolutionized the research field of intermetallics due to the ease with which one can derive potential candidates for multifunctional applications. During recent years, many half Heusler alloys have been investigated for their thermoelectric properties. The f-electron-based rare-earth ternary half Heusler compound DyPdBi has its f energy levels located close to the Fermi energy level. Other research efforts have emphasized that such materials have good thermoelectric capabilities. We have explored using first principles the electronic band structure of DyPdBi by use of different exchange correlation potentials in the density functional theoretical framework. Transport coefficients that arise in the study of thermoelectric properties of DyPdBi have been calculated and have illustrated its potential as an efficient thermoelectric material. Both the theoretically estimated Seebeck coefficient and the power factor agree well with the available experimental results. Our calculations illustrate that it is essential to include spin–orbit coupling in these models of f-electron half Heusler materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rajagopalan, M. and Sundareswari, M.: Ab initio study of the electronic structure of rhodium based intermetallic compounds under pressure. J. Alloys Compd. 379, 815 (2004). doi: 10.1016/j.jallcom.2004.02.011.CrossRefGoogle Scholar
Heusler, Fr.: Über die Synthese ferromagnetischer Manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219223 (1903).Google Scholar
Kübler, J., Williams, A.R., and Sommers, C.B.: Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 28, 17451755 (1983).CrossRefGoogle Scholar
Raphael, M.P., Ravel, B., Huang, Q., Willard, M.A., Cheng, S.F., Das, B.N., Stroud, R.M., Bussmann, K.M., Claassen, J.H., and Harris, V.G.: Presence of antisite disorder and its characterization in the predicted half-metal Co2MnSi. Phys. Rev. B 66, 104429 (2002).CrossRefGoogle Scholar
Cheng, S.F., Nadgorny, B., Bussmann, K., Carpenter, E.E., Das, B.N., Trotter, G., Raphael, M.P., and Harris, V.G.: Growth and magnetic properties of single crystal Co2MnX (X = Si,Ge) Heusler alloys. IEEE Trans. Magn. 37, 21762178 (2001).CrossRefGoogle Scholar
Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C., Lin, H-J., and Morais, J.: Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B 72, 184434 (2005).CrossRefGoogle Scholar
Galanakis, I., Mavropoulos, Ph., and Dederichs, P.H.: Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D: Appl. Phys. 39, 765775 (2006).CrossRefGoogle Scholar
Kulkova, S.E., Eremeev, S.V., Kakeshita, T., Kulkov, S.S., and Ruden-ski, G.E.: The electronic structure and magnetic properties of full and half-Heusler alloys. Mater. Trans. 47, 599606 (2006).CrossRefGoogle Scholar
Nanda, B.R.K. and Dasgupta, I.: Electronic structure and magnetism in half-Heusler compounds. J. Phys.: Condens. Matter 15, 73077323 (2003). doi: 10.1088/0953-8984/15/43/014.Google Scholar
Nanda, B.R.K. and Dasgupta, I.: Electronic structure and magnetism in doped semiconducting half-Heusler compounds. J. Phys.: Condens. Matter 17, 50375048 (2005). doi: 10.1088/0953-8984/17/33/008.Google Scholar
Muta, H., Kanemitsu, T., Kurosaki, K., and Yamanaka, S.: Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds. Mater. Trans. 47, 14531457 (2006).CrossRefGoogle Scholar
Larson, P., Mahanti, S.D., Sportouch, S., and Kanatzidis, M.G.: Electronic structure of rare-earth nickel pnictides: Narrow-gap thermoelectric materials. Phys. Rev. B 59, 660668 (1999).CrossRefGoogle Scholar
Jesus, C.B.R., Rosa, P.F.S., Garitezi, T.M., Lesseux, G.G., Urbano, R.R., Reittori, C., and Pagliuso, P.G.: Electron spin resonance of the half-Heusler antiferromagnetic GdPdBi. Solid State Commun. 177, 9597 (2014).CrossRefGoogle Scholar
Downie, R.A., MacLaren, D.A., and Bos, J-W.G.: Thermoelectric performance of multiphase XNiSn (X = Ti, Zr, Hf) half-Heusler alloys. J. Mater. Chem. A 2, 61076114 (2014). doi: 10.1039/c3ta13955g.CrossRefGoogle Scholar
Gofryk, K., Kaczorowski, D., Plackowski, T., Leithe-Jasper, A., and Grin, Yu.: Magnetic and transport properties of rare-earth-based half-Heusler phases RPdBi: Prospective systems for topological quantum phenomena. Phys. Rev. B 84, 035208 (2011). doi: 10.1103/Phys-RevB.84.035208. ArXiv: 1106.3763.CrossRefGoogle Scholar
Nakajima, Y., Hu, R., Kirshenbaum, K., Hughes, A., Syers, P., Wang, X., Wang, R., Saha, S.R., Pratt, D., Lynn, J.W., and Paglione, J.: Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors. Sci. Adv. 1, e1500242 (2015). doi: 10.1126/sciadv.1500242. ArXiv: 1501.04096.CrossRefGoogle ScholarPubMed
Al-Sawai, W., Lin, H., Markiewiez, R.S., Wray, L.A., Xia, Y., Xu, S-Y., Hasan, Z., and Bansil, A.: Topological electronic structure in half-Heusler topological insulators. Phys. Rev. B 82, 125208 (2010).CrossRefGoogle Scholar
Bose, S.K., Kudrnovsky, J., Drchal, V., and Turek, I.: Pressure dependence of Curie temperature and resistivity in complex Heusler alloys. Phys. Rev. B 84, 174422 (2011). doi: 10.1103/PhysRevB.84.174422. ArXiv: 1010.3025.CrossRefGoogle Scholar
Pan, Y., Nikitin, A.M., Bay, T.V., Huang, Y.K., Paulsen, C., Yan, B.H., and de Visser, A.: Superconductivity and magnetic order in the non-centrosymmetric half-Heusler compound ErPdBi. Europhys. Lett. 104, 27001 (2013).CrossRefGoogle Scholar
Galanakis, I., Dederichs, P.H., and Papanikolaou, N.: Origin and properties of the gap in the half-ferrormagetic Heusler alloys. Phys. Rev. B 66, 134428 (2002).CrossRefGoogle Scholar
Gillessen, M.: Massgeschneidertes und Analytik-Ersatz über die quantenchemischen Untersuchungen einiger ternӓrer intermet-allisher Verbindungen, Dissertation, Aachen, 2009. Available at http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3122/pdf/Gillessens_Michael.pdf.Google Scholar
Gillessen, M. and Dronskowski, R.: A Combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 30, 12901299 (2009).CrossRefGoogle ScholarPubMed
Gillessen, M. and Dronskowski, R.: A Combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 31, 612619 (2010).CrossRefGoogle ScholarPubMed
Krishnaveni, S., Sundareswari, M., and Rajagopalan, M.: Prediction of electronic and magnetic properties of full Heusler alloy Ir2CrAl. IOSR J. Appl. Phys. 7, 5255 (2015). doi: 10.9790/4861-07135255.Google Scholar
Müchler, L., Casper, F., Yan, B., Chadov, S., and Felser, C.: Topological insulators and thermoelectric materials. Phys. Status Solidi RRL 7, 91100 (2013). doi: 10.1002/pssr.201206411.CrossRefGoogle Scholar
Mahan, G.D. and Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93, 74367439 (1996).CrossRefGoogle ScholarPubMed
Madsen, G.K.H. and Singh, D.J.: BoltzTraP: A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 6771 (2006). doi: 10.1016/j.cpc.2006.03.007. ArXiv: cond-mat/0602203.CrossRefGoogle Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K.: Restoring the Desity-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Let. 100, 136406 (2008).Google Scholar
Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J.: WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Wien, 2001). ISBN 3-9501031-1-2. Freely available at http://www.wien2k.at/reg_user/textbooks/usersguide.pdf.Google Scholar
Cottenier, S.: Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction, 2002–2013, 2nd ed. (KU Leuven, Belgium, 2015). ISBN 978-90-807215-1-7. Freely available at http://www.wien2k.at/reg user/textbooks.Google Scholar
Yang, J., Li, H., Wu, T., Zhang, W., Chen, L., and Yang, J.: Evaluation of half-Heusler compounds as thermoelectric materials based on the calcu-lated electrical transport properties. Adv. Funct. Mater. 18, 28802888 (2008). doi: 10.1002/adfm.200701369.CrossRefGoogle Scholar
Saini, S.M., Singh, N., Nautiyal, T., and Auluck, S.: Reflectance and magneto-optical Kerr rotation in DyP. Indian J. Pure Appl. Phys. 45, 6668 (2007).Google Scholar
Anisimov, V.I., Zaanen, J., and Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I.J. Phys. Rev. B 67, 943954 (1991).CrossRefGoogle Scholar
Saini, S.M., Singh, N., Nautiyal, T., and Auluck, S.: Optical properties of heavy rare earth metals (Gd-Lu). Solid State Commun. 140, 125129 (2006).CrossRefGoogle Scholar
Saini, S.M., Singh, N., Nautiyal, T., and Auluck, S.: Optical and magneto-optical properties of gadolinium. J. Appl. Phys. 101, 033523 (2007).CrossRefGoogle Scholar
Saini, S.M., Singh, N., Nautiyal, T., and Auluck, S.: Comparative study of optical and magneto-optical properties of GdFe2 and GdCo2 . J. Phys.: Condens. Matter 19, 176203 (2007). doi: 10.1088/0953-8984/19/17/176203.Google ScholarPubMed
Singh, N., Saini, S.M., Nautiyal, T., and Auluck, S.: Electronic structure and optical properties of rare earth sesquioxides (R2O3, R = La, Pr, and Nd). J. Appl. Phys. 100, 083525 (2006). doi: 10.1063/1.2353267.CrossRefGoogle Scholar
Singh, N., Saini, S.M., Nautiyal, T., and Auluck, S.: Theoretical investigation of the optical and magneto-optical properties of EuX (X = S, Se, and Te). Phys. B 388, 99106 (2007).CrossRefGoogle Scholar
Singh, N., Saini, S.M., Nautiyal, T., and Auluck, S.: Electronic structure and optical properties of rare earth hexaborides RB6 (R = La, Ce, Pr, Nd, Sm, Eu, Gd). J. Phys.: Condens. Matter 19, 346226 (2007). doi: 10.1088/0953-8984/19/34/346226.Google Scholar
Saini, S.M., Nautiyal, T., and Auluck, S.: Electronic and optical properties of rare earth trifluorides RF3 (R = La, Ce, Pr, Nd, Gd and Dy). Mater. Chem. Phys. 129, 349355 (2011). doi: 10.1016/j.matchemphys.2011.04.024.CrossRefGoogle Scholar
Rameshe, B., Rajagopalan, M., and Palanivel, B.: Electronic structure, structural phase stability, optical and thermoelectric properties of Sr2AlM0O6 (M0 = Nb and Ta) from first principles calculations. Comput. Condens. Matter 4, 1322 (2015). doi: 10.1016/j.cocom.2015.03.003.CrossRefGoogle Scholar
Singh, D.J.: Doping dependent thermopower of PdTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010). doi: 10.1103/PhysRevB.81.195217.CrossRefGoogle Scholar
Nishino, Y.: Development of thermoelectric materials based on Fe2VAl Heusler compound for energy harvesting applications. Inst. Phys. Conf. Ser.: Mater. Sci. Eng. 18, 142001 (2011). doi: 10.1088/1757-899X/18/14/142001.Google Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antinomy telluride bulk alloys. Science 320, 634638 (2008). doi: 10.1126/science.1156446.CrossRefGoogle Scholar
Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.P., and Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 10431053. doi: 10.1002/adma.200600527.CrossRefGoogle Scholar
Hicks, L.D. and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 1272712731 (1993).CrossRefGoogle ScholarPubMed