Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T00:17:23.807Z Has data issue: false hasContentIssue false

Atypical behaviors of BMIMTf ionic liquid present in ionic conductivity, SEM, and TG/DTG analyses of P(VdF-HFP)/LiTf-based solid polymer electrolyte system

Published online by Cambridge University Press:  08 November 2011

S. Ramesh*
Affiliation:
Centre for Ionics, Department of Physics, Faculty of Science, Centre for Ionics, University of Malaya, 50603 Kuala Lumpur, Malaysia
Soon-Chien Lu
Affiliation:
Centre for Surface Chemistry and Catalysis, Faculty of Bioengineering Science, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Solid polymer electrolytes (SPEs) with poly(vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] as polymer host, doped with lithium trifluoromethanesulfonate (LiTf) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMTf) have been synthesized via solution casting method. This P(VdF-HFP)/LiTf/BMIMTf-based SPE achieves ∼2.4 × 10−3 and ∼1.1 × 10−2 S·cm−1 at 30 and 80 °C, respectively, with 100 part by weight of BMIMTf incorporated into the system. A very interesting trend of temperature-dependence ionic conductivity has been obtained. A rationalization of the trend is given and the morphological changes observed in scanning electron micrographs seem to be commensurate with it. Thermogravimetric and differential thermogravimetric analyses reveal some changes in thermal properties of the SPEs, including the possibility of phase separation happening in the sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Costa, L.T., Lavall, R.L., Borges, R.S., Rieumont, J., Silva, G.G., and Ribeiro, M.C.C.: Polymer electrolytes based on poly(ethylene glycol) dimethyl ether and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate: Preparation, physico-chemical characterization, and theoretical study. Electrochim. Acta 53, 1568 (2007).CrossRefGoogle Scholar
2.Lee, J.S., Nohira, T., and Hagiwara, R.: Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified temperature fuel cell. J. Power Sources 171, 535 (2007).CrossRefGoogle Scholar
3.Brazier, A., Appetecchi, G.B., Passerini, S., Vuk, A.S., Orel, R., Donsanti, F., and Decker, F.: Ionic liquids in electrochromic devices. Electrochim. Acta 52, 4792 (2007).CrossRefGoogle Scholar
4.Lee, K-M., Suryanarayanan, V., and Ho, K-C.: A photo-physical and electrochemical impedance spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene). J. Power Sources 185, 1605 (2008).CrossRefGoogle Scholar
5.Forsyth, S.A. and MacFarlane, D.R.: 1-Alkyl-3-methylbenzotriazolium salts: Ionic solvents and electrolytes. J. Mater. Chem. 13, 2451 (2003).CrossRefGoogle Scholar
6.Wang, N., Zhang, X.X., Liu, H.H., and He, B.Q.: 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr. Polym. 76, 482 (2009).Google Scholar
7.Keskin, S., Kayrak-Talay, D., Akman, U., and Hortaçsu, Ö.: A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 43, 150 (2007).CrossRefGoogle Scholar
8.Xu, J.J., Ye, H., and Huang, J.: Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochem. Commun. 7, 1309 (2005).CrossRefGoogle Scholar
9.Singh, P.K., Kim, K-W., and Rhee, H-W.: Electrical, optical and photoelectrochemical studies on a solid PEO-polymer electrolyte doped with low viscosity ionic liquid. Electrochem. Commun. 10, 1769 (2008).CrossRefGoogle Scholar
10.Choi, N-S., Lee, Y.M., Lee, B.H., Lee, J.A., and Park, J-K.: Nanocomposite single ion conductor based on organic–inorganic hybrid. Solid State Ionics 167, 293 (2004).CrossRefGoogle Scholar
11.Tiyapiboonchaiya, C., Pringle, J.M., Sun, J.Z., Byrne, N., Howlett, P.C., Macfarlane, D.R., and Forsyth, M.: The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 3, 29 (2004).CrossRefGoogle ScholarPubMed
12.Ramesh, S. and Chai, M.F.: Conductivity, dielectric behaviour and FTIR studies of high molecular weight poly(vinylchloride)–lithium triflate polymer electrolytes. Mater. Sci. Eng., B 139, 240 (2007).CrossRefGoogle Scholar
13.Chiang, C-Y., Shen, Y.J., Reddy, M.J., and Chu, P.P.: Complexation of poly(vinylidene fluoride):LiPF6 solid polymer electrolyte with enhanced ion conduction in ‘wet’ form. J. Power Sources 123, 222 (2003).CrossRefGoogle Scholar
14.Kumar, G.G., Kim, P., Kim, A.R., Nahm, K.S., and Elizabeth, R.N.: Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes. Mater. Chem. Phys. 115, 40 (2009).CrossRefGoogle Scholar
15.Gregorio, R. Jr. and Borges, D.S.: Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer 49, 4009 (2008).CrossRefGoogle Scholar
16.Marcilla, R., Alcaide, F., Sardon, H., Pomposo, J.A., Pozo-Gonzalo, C., and Mecerreyes, D.: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem. Commun. 8, 482 (2006).CrossRefGoogle Scholar
17.Reiter, J., Vondrák, J., Michálek, J., and Mička, Z.: Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim. Acta 52, 1398 (2006).CrossRefGoogle Scholar
18.Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Fagnoni, M., Protti, S., Gerbaldi, C., and Spinella, A.: Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyehtyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J. Power Sources 195, 559 (2010).CrossRefGoogle Scholar
19.Abbrent, S., Plestil, J., Hlavata, D., Lindgren, J., Tegenfeldt, J., and Wendsjö, A.: Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407 (2001).CrossRefGoogle Scholar
20.Elmér, A.M., Wesslén, B., Sommer-Larsen, P., West, K., Hassender, H., and Jannasch, P.: Ion conductive electrolyte membranes based on co-continuous polymer blends. J. Mater. Chem. 13, 2168 (2003).CrossRefGoogle Scholar
21.Aravindan, V. and Vickraman, P.: A study on LiBOB-based nanocomposite gel polymer electrolytes (NCGPE) for Lithium-ion batteries. Ionics 13, 277 (2007).CrossRefGoogle Scholar
22.Li, G.C., Zhang, P., Zhang, H.P., Yang, L.C., and Wu, Y.P.: A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochem. Commun. 10, 1883 (2008).CrossRefGoogle Scholar
23.Sirisopanaporn, C., Fernicola, A., and Scrosati, B.: New, ionic liquid-based membranes for lithium battery application. J. Power Sources 186, 490 (2009).CrossRefGoogle Scholar
24.Singh, B., Hundal, M.S., Park, G-G., Park, J-S., Lee, W-Y., Kim, C-S., Yamada, K., and Sekhon, S.S.: Non-aqueous polymer electrolytes containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium tetrafluoroborate. Solid State Ionics 178, 1404 (2007).CrossRefGoogle Scholar