Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T09:32:52.721Z Has data issue: false hasContentIssue false

Assembly, formation mechanism, and enhanced gas-sensing properties of porous and hierarchical SnO2 hollow nanostructures

Published online by Cambridge University Press:  31 January 2011

Jinhuai Liu*
Affiliation:
Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
Kai Qian
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
Sitaramanjaneya Mouli T.
Affiliation:
Centre of Nanotechnology, Indian Institute of Technology-Roorkee, Roorkee 247667, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hierarchical and hollow SnS2 nanostructures as precursors were fabricated via a surfactant-assisted assembly process using sodium dodecyl sulfate as soft templates. The as-prepared SnS2 nanostructures were further oxidized to form porous SnO2 conversion for investigating their gas-sensing properties in drug-precursor detection. On the basis of a series of time- and ratio-dependent reactions, a formation mechanism of the special nanostructures and factors influencing morphology and structure were determined. Gas-sensing measurements revealed that the porous and hierarchical SnO2 hollow nanostructures were sensitive to drug precursors, indicating promising applications in environmental monitoring and public safety investigation. In addition, we found that the assembled SnO2 nanomaterials possessed significantly enhanced gas-sensing properties compared with unassembled SnO2 with a solid interior.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., Fratzl, P.Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275 (2005)CrossRefGoogle Scholar
2.Li, Y., Sasaki, T., Shimizu, Y., Koshizaki, N.Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: Transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation. J. Am. Chem. Soc. 130, 14755 (2008)CrossRefGoogle ScholarPubMed
3.Guo, Z.G., Liu, W.M., Su, B.L.Fabrication of Co3O4 hierarchically superhydrophobic boat-like hollow cages at the silicon surface. Nanotechnology 19, 445608 (2008)CrossRefGoogle ScholarPubMed
4.Xing, W., Huang, C.C., Zhuo, S.P., Yuan, X., Wang, G.Q., Hulicova, D.J., Yan, Z.F., Lu, G.Q.Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47, 1715 (2009)CrossRefGoogle Scholar
5.Pouget, E., Dujardin, E., Cavalier, A., Moreac, A., Valery, C., Artzner, V.M., Weiss, T., Renault, A., Paternostre, M., Artzner, F.Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nat. Mater. 6, 434 (2007)CrossRefGoogle ScholarPubMed
6.Wu, S.L., Liu, X.M., Hu, T., Chu, P.K., Ho, J.P.Y., Chan, Y.L., Yeung, K.W.K., Chu, C.L., Hung, T.F., Huo, K.F., Chung, C.Y., Lu, W.W., Cheung, K.M.C., Luk, K.D.K.A biomimetic hierarchical scaffold: Natural growth of nanotitanates on three-dimensional microporous Ti-based metals. Nano Lett. 8, 3803 (2008)CrossRefGoogle ScholarPubMed
7.Fan, Y.J., Li, Z.P., Wang, L., Zhan, J.H.Catanionic-surfactant-controlled morphosynthesis and gas-sensing properties of corundum-type In2O3. Nanotechnology 20, 285501 (2009)CrossRefGoogle Scholar
8.Zhu, T.J., Chen, X., Cao, Y.Q., Zhao, X.B.Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method. J. Phys. Chem. C 113, 8085 (2009)CrossRefGoogle Scholar
9.He, X.B., Gao, L.Morphology and phase evolution of hierarchical architectures of cadmium sulfide. J. Phys. Chem. C 113, 10981 (2009)CrossRefGoogle Scholar
10.Fei, J.B., Cui, Y., Yan, X.H., Qi, W., Yang, Y., Wang, K.W., He, Q., Li, J.B.Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv. Mater. 20, 452 (2008)CrossRefGoogle Scholar
11.Zhang, X.J., Zhang, X.H., Shi, W.S., Meng, X.M., Lee, C.S., Lee, S.Morphology-controllable synthesis of pyrene nanostructures and its morphology dependence of optical properties. J. Phys. Chem. B 109, 18777 (2005)CrossRefGoogle ScholarPubMed
12.Edler, K.J., Wasbrough, M.J., Holdaway, J.A., O'Driscoll, B.M.Self-assembled films formed at the air-water interface from CTAB/SDS mixtures with water-soluble polymers. Langmuir 25, 4047 (2009)CrossRefGoogle ScholarPubMed
13.Chen, D., Shen, G.Z., Tang, K.B., Liu, Y.K., Qian, Y.T.Aligned SnS2 nanotubes fabricated via a template-assisted solvent-relief process. Appl. Phys. A 77, 747 (2003)CrossRefGoogle Scholar
14.Shi, W.D., Huo, L.H., Wang, H.S., Zhang, H.J., Yang, J.H., Wei, P.H.Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 17, 2918 (2006)CrossRefGoogle Scholar
15.Vilaseca, M., Coronas, J., Cirera, A., Cornet, A., Morante, J.R., Santamaria, J.Gas detection with SnO2 sensors modified by zeolite films. Sens. Actuators, B 124, 99 (2007)CrossRefGoogle Scholar
16.Wang, Y., Wu, M.H., Jiao, Z., Lee, J.Y.One-dimensional SnO2 nanostructures: Facile morphology tuning and lithium storage properties. Nanotechnology 20, 345704 (2009)CrossRefGoogle ScholarPubMed
17.Meduri, P., Pendyala, C., Kumar, V., Sumanasekera, G.U., Sunkara, M.K.Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 9, 612 (2009)CrossRefGoogle ScholarPubMed
18.Gubbala, S., Chakrapani, V., Kumar, V., Sunkara, M.K.Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater. 18, 2411 (2008)CrossRefGoogle Scholar
19.Liu, J.Y., Guo, Z., Meng, F.L., Jia, Y., Luo, T., Li, M.Q., Liu, J.H.Novel single-crystalline hierarchical structured ZnO nanorods fabricated via a wet-chemical route: Combined high gas sensing performance with enhanced optical properties. Cryst. Growth Des. 9, 1716 (2009)CrossRefGoogle Scholar
20.Liu, J.Y., Guo, Z., Meng, F.L., Luo, T., Li, M.Q., Liu, J.H.Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5 (en=ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology 20, 125501 (2009)CrossRefGoogle Scholar
21.Guo, Z., Liu, J.Y., Jia, Y., Chen, X., Meng, F.L., Li, M.Q., Liu, J.H.Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnology 19, 345704 (2008)CrossRefGoogle ScholarPubMed
22.Martinez, C.J., Hockey, B., Montgomery, C.B., Semancik, S.Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21, 7937 (2005)CrossRefGoogle ScholarPubMed
23.Arts, J.H.E., Mojet, J., Van-Gemert, L.J., Emmen, H.H., Lammers, J.H.C., Marquart, J., Woutersen, R.A., Feron, V.J.An analysis of human response to the irritancy of acetone vapors. Crit. Rev. Toxicol. 32, 43 (2002)CrossRefGoogle Scholar
24.Hunt, D.L., Li, C.S.A regression spline model for developmental toxicity data. Toxicol. Sci. 92, 329 (2006)CrossRefGoogle ScholarPubMed
25.Ellmer, K., Mientus, R., Wei, V., Rossner, H.In situ energy-dispersive x-ray diffraction system for time-resolved thin-film growth studies. Meas. Sci. Technol. 14, 336 (2003)CrossRefGoogle Scholar
26.Kiebach, R., Schaefer, M., Porsch, F., Bensch, W., Anorg, Z.In-situ energy dispersive x-ray diffraction studies of the crystallization of (1,2-DAPH2)2Ge9(OH)4O18·2H2O under solvothermal conditions. Allg. Chem. 631, 369 (2005)CrossRefGoogle Scholar
27.Yan, G.W., Huang, J.H., Zhang, J.F., Qian, C.J.Aggregation of hollow CaCO3 spheres by calcite nanoflakes. Mater. Res. Bull. 43, 2069 (2008)CrossRefGoogle Scholar
28.Wang, W.X., Li, Q., Lin, H., Chen, Z.Q., Nie, M., Hong, L.J., Li, Y.Deposition of copper sulfide hollow nanospheres in aqueous solution at room temperature. Mater. Sci. Eng., B 156, 52 (2009)CrossRefGoogle Scholar
29.Wang, Y., Ma, C., Sun, X., Li, H.Preparation and characterization of SnO2 nanoparticles with a surfactant-mediated method. Nanotechnology 13, 565 (2002)CrossRefGoogle Scholar
30.Tao, Q., He, H.P., Frost, R.L., Yuan, P., Zhu, J.X.Nanomaterials based upon silylated layered double hydroxides. Appl. Surf. Sci. 255, 4334 (2009)CrossRefGoogle Scholar
31.Lei, Y.Q., Song, S.Y., Fan, W.Q., Xing, Y., Zhang, H.J.Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: Hierarchical structures and their enhanced photocatalytic property. J. Phys. Chem. C 113, 1280 (2009)CrossRefGoogle Scholar
32.Mohanan, J.L., Arachchige, I.U., Brock, S.L.Porous semiconductor chalcogenide aerogels. Science 307, 397 (2005)CrossRefGoogle ScholarPubMed
33.Lin, M., Zhang, J., Boothroyd, C., Foo, Y.L., Yeadon, M., Loh, K.P.Hollowing mechanism of zinc sulfide nanowires in vacuum induced by an atomic oxygen beam. J. Phys. Chem. B 108, 9631 (2004)CrossRefGoogle Scholar
34.Meng, Y.D., Chen, D.R., Jiao, X.L.Synthesis and characterization of CoFe2O4 hollow spheres. Eur. J. Inorg. Chem. 25, 4019 (2008)CrossRefGoogle Scholar
35.Tournier, G., Pijolat, C.Selective filter for SnO2-based gas sensor: Application to hydrogen trace detection. Sens. Actuators, B 106, 553 (2005)CrossRefGoogle Scholar
36.Kapse, V.D., Ghosh, S.A., Chaudhari, G.N., Raghuwanshi, F.C.Nanocrystalline In2O3-based H2S sensors operable at low temperatures. Talanta 76, 610 (2008)CrossRefGoogle ScholarPubMed
37.Xu, J.Q., Chen, Y.P., Chen, D.Y., Shen, J.N.Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sens. Actuators, B 113, 526 (2006)Google Scholar
38.Kim, H.R., Choi, K.I., Lee, J.H., Akbar, S.A.Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres. Sens. Actuators, B 136, 138 (2009)CrossRefGoogle Scholar
39.Veldsink, J.W., Versteeg, G.F., Van-Swaaij, W.P.M., Van-Damme, R.M.J.The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. Chem. Eng. J. 57, 115 (1995)Google Scholar