Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T12:28:22.315Z Has data issue: false hasContentIssue false

Antimicrobial hydrogels with controllable mechanical properties for biomedical application

Published online by Cambridge University Press:  07 May 2019

Si-Hao Chen
Affiliation:
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
Zhi Li
Affiliation:
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
Zu-Lan Liu
Affiliation:
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
Lan Cheng
Affiliation:
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
Xiao-Ling Tong
Affiliation:
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
Fang-Yin Dai*
Affiliation:
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The antibacterial hydrogels can be widely used in the biomedical area owing to their excellent properties. The main limitation of antibacterial hydrogels is their poor mechanical strength. In this study, the novel hydrogels were fabricated with a mixture of silk fibroin (SF), chitosan (CH), agarose (AG), and silver nanoparticles (SNPs) via facile reaction condition without inorganic substances. The mechanical property of these fabricated hydrogels can be modulated by the concentration of SF or AG. The rheological studies demonstrated enhanced elasticity of CH-doped hydrogels. Because of the presence of CH and Ag in hydrogels, the antimicrobial property against gram-positive and gram-negative bacteria was exhibited. Cytocompatibility test proved the very low toxic nature of the hydrogels. In addition, these composite hydrogels have a smaller porosity, higher swelling ratio, and good compatibility, indicating their great potential for biomedical application.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xu, R., Luo, G., Xia, H., He, W., Zhao, J., Liu, B., Tan, J., Zhou, J., Liu, D., Wang, Y., Yao, Z., Zhan, R., Yang, S., and Wu, J.: Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 40, 111 (2015).CrossRefGoogle ScholarPubMed
Gong, C., Wu, Q., Wang, Y., Zhang, D., Luo, F., Zhao, X., Wei, Y., and Qian, Z.: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 34, 63776387 (2013).CrossRefGoogle ScholarPubMed
Zhao, X., Wu, H., Guo, B., Dong, R., Qiu, Y., and Ma, P.X.: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 3447 (2017).CrossRefGoogle ScholarPubMed
Unnithan, A.R., Gnanasekaran, G., Sathishkumar, Y., Lee, Y.S., and Kim, C.S.: Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr. Polym. 102, 884892 (2014).CrossRefGoogle ScholarPubMed
MacNeil, S.: Progress and opportunities for tissue-engineered skin. Nature 445, 874880 (2007).CrossRefGoogle ScholarPubMed
Duchi, S., Onofrillo, C., O’Connell, C.D., Blanchard, R., Augustine, C., Quigley, A.F., Kapsa, R.M.I., Pivonka, P., Wallace, G., Di Bella, C., and Choong, P.F.M.: Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Sci. Rep. 7, 5837 (2017).CrossRefGoogle ScholarPubMed
Drury, J.L. and Mooney, D.J.: Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24, 43374351 (2003).CrossRefGoogle ScholarPubMed
Raeber, G.P., Lutolf, M.P., and Hubbell, J.A.: Molecularly engineered PEG hydrogels: A novel model system for proteolytically mediated cell migration. Biophys. J. 89, 13741388 (2005).CrossRefGoogle ScholarPubMed
Mann, B.K., Gobin, A.S., Tsai, A.T., Schmedlen, R.H., and West, J.L.: Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering. Biomaterials 22, 30453051 (2001).CrossRefGoogle ScholarPubMed
Ngoc Quyen, T., Joung, Y.K., Lih, E., and Park, K.D.: In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 12, 28722880 (2011).Google Scholar
Balakrishnan, B., Mohanty, M., Fernandez, A.C., Mohanan, P.V., and Jayakrishnan, A.: Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 27, 13551361 (2006).CrossRefGoogle Scholar
Yang, J.Z., Zhang, Y.S., Yue, K., and Khademhosseini, A.: Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 57, 125 (2017).CrossRefGoogle ScholarPubMed
Li, W., Li, X., Li, W., Wang, T., Li, X., Pan, S., and Deng, H.: Nanofibrous mats layer-by-layer assembled via electrospun cellulose acetate and electrosprayed chitosan for cell culture. Eur. Polym. J. 48, 18461853 (2012).CrossRefGoogle Scholar
Mohammed, S., Chouhan, G., Anuforom, O., Cooke, M., Walsh, A., Morgan-Warren, P., Jenkins, M., and de Cogan, F.: Thermosensitive hydrogel as an in situ gelling antimicrobial ocular dressing. Mater. Sci. Eng., C 78, 203209 (2017).CrossRefGoogle Scholar
Normand, V., Lootens, D.L., Amici, E., Plucknett, K.P., and Aymard, P.: New insight into agarose gel mechanical properties. Biomacromolecules 1, 730738 (2000).CrossRefGoogle ScholarPubMed
Yuan, Y., Wang, L., Mu, R.J., Gong, J.N., Wang, Y.Y., Li, Y.Z., Ma, J.Q., Pang, J., and Wu, C.H.: Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels. Carbohydr. Polym. 190, 196203 (2018).CrossRefGoogle ScholarPubMed
Pauly, H.M., Place, L.W., Donahue, T.L.H., and Kipper, M.J.: Mechanical properties and cell compatibility of agarose hydrogels containing proteoglycan mimetic graft copolymers. Biomacromolecules 18, 22202229 (2017).CrossRefGoogle ScholarPubMed
Raia, N.R., Partlow, B.P., McGill, M., Kimmerling, E.P., Ghezzi, C.E., and Kaplan, D.L.: Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131, 5867 (2017).CrossRefGoogle ScholarPubMed
Tozzi, L., Laurent, P.A., Di Buduo, C.A., Mu, X., Massaro, A., Bretherton, R., Stoppel, W., Kaplan, D.L., and Balduini, A.: Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials 178, 122133 (2018).CrossRefGoogle ScholarPubMed
Dubey, P., Kumar, S., Aswal, V.K., Ravindranathan, S., Rajamohanan, P.R., Prabhune, A., and Nisal, A.: Silk fibroin-sophorolipid gelation: Deciphering the underlying mechanism. Biomacromolecules 17, 33183327 (2016).CrossRefGoogle ScholarPubMed
Gharibi, R., Yeganeh, H., Rezapour-Lactoee, A., and Hassan, Z.M.: Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: In vitro and in vivo evaluations. ACS Appl. Mater. Interfaces 7, 2429624311 (2015).CrossRefGoogle ScholarPubMed
Chen, W-Y., Chang, H-Y., Lu, J-K., Huang, Y-C., Harroun, S.G., Tseng, Y-T., Li, Y-J., Huang, C-C., and Chang, H-T.: Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater. 25, 71897199 (2015).CrossRefGoogle Scholar
Dash, M., Chiellini, F., Ottenbrite, R.M., and Chiellini, E.: Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 9811014 (2011).CrossRefGoogle Scholar
Ueno, H., Mori, T., and Fujinaga, T.: Topical formulations and wound healing applications of chitosan. Adv. Drug Delivery Rev. 52, 105115 (2001).CrossRefGoogle ScholarPubMed
Klossner, R.R., Queen, H.A., Coughlin, A.J., and Krause, W.E.: Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9, 29472953 (2008).CrossRefGoogle ScholarPubMed
Chedly, J., Soares, S., Montembault, A., von Boxberg, Y., Veron-Ravaille, M., Mouffle, C., Benassy, M.N., Taxi, J., David, L., and Nothias, F.: Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials 138, 91107 (2017).CrossRefGoogle ScholarPubMed
Pirvanescu, H., Balasoiu, M., Ciurea, M.E., Balasoiu, A.T., and Manescu, R.: Wound infections with multi-drug resistant bacteria. Chirurgia 109, 7379 (2014).Google ScholarPubMed
Liang, D., Lu, Z., Yang, H., Gao, J., and Chen, R.: Novel asymmetric wettable AgNPs/chitosan wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 8, 39583968 (2016).CrossRefGoogle ScholarPubMed
Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., and Chen, R.: Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr. Polym. 156, 460469 (2017).CrossRefGoogle ScholarPubMed
Jayaramudu, T., Varaprasad, K., Raghavendra, G.M., Sadiku, E.R., Mohana Raju, K., and Amalraj, J.: Green synthesis of tea Ag nanocomposite hydrogels via mint leaf extraction for effective antibacterial activity. J. Biomater. Sci., Polym. Ed. 28, 15881602 (2017).CrossRefGoogle ScholarPubMed
Ahamed, M., AlSalhi, M.S., and Siddiqui, M.K.J.: Silver nanoparticle applications and human health. Clin. Chim. Acta 411, 18411848 (2010).CrossRefGoogle ScholarPubMed
Matricardi, P., Di Meo, C., Coviello, T., Hennink, W.E., and Alhaique, F.: Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Delivery Rev. 65, 11721187 (2013).CrossRefGoogle ScholarPubMed
Ayub, Z.H., Arai, M., and Hirabayashi, K.: Mechanism of the gelation of fibroin solution. Biosci., Biotechnol., Biochem. 57, 19101912 (1993).CrossRefGoogle Scholar
Asakura, T., Kuzuhara, A., Tabeta, R., and Saito, H.: Conformation characterization of bombyx mori silk fibroin in the solid state by high-frequency 13c cross polarization–magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules 18, 18411845 (1985).CrossRefGoogle Scholar
Magoshi, J., Magoshi, Y., Becker, M.A., and Nakamura, S.: Biospinning by bombyx mori silkworm. Abstr. Pap. 212, 53-CELL (1996).Google Scholar
Hanawa, T., Watanabe, A., Tsuchiya, T., Ikoma, R., Hidaka, M., and Sugihara, M.: New oral dosage form for elderly patients—preparation and characterization of silk fibroin gel. Chem. Pharm. Bull. 43, 284288 (1995).CrossRefGoogle ScholarPubMed
Zhou, Y., Dong, Q., Yang, H., Liu, X., Yin, X., Tao, Y., Bai, Z., and Xu, W.: Photocrosslinked maleilated chitosan/methacrylated poly(vinyl alcohol) bicomponent nanofibrous scaffolds for use as potential wound dressings. Carbohydr. Polym. 168, 220226 (2017).CrossRefGoogle ScholarPubMed
Singh, Y.P., Bhardwaj, N., and Mandal, B.B.: Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering. ACS Appl. Mater. Interfaces 8, 2123621249 (2016).CrossRefGoogle ScholarPubMed
Priya, M.V., Kumar, R.A., Sivashanmugam, A., Nair, S.V., and Jayakumar, R.: Injectable amorphous chitin-agarose composite hydrogels for biomedical applications. J. Funct. Biomater. 6, 849862 (2015).CrossRefGoogle ScholarPubMed
Le Goff, K.J., Gaillard, C., Helbert, W., Garnier, C., and Aubry, T.: Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr. Polym. 116, 117123 (2015).CrossRefGoogle ScholarPubMed
Zheng, L.Y. and Zhu, J.A.F.: Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 54, 527530 (2003).CrossRefGoogle Scholar
Rai, M., Yadav, A., and Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 7683 (2009).CrossRefGoogle ScholarPubMed