Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:35:18.307Z Has data issue: false hasContentIssue false

Analytic embedded atom method potentials for face-centered cubic metals

Published online by Cambridge University Press:  31 January 2011

S. S. Pohlong
Affiliation:
Department of Physics, North Eastern Hill University, Shillong, 793022, Meghalaya, India
P. N. Ram
Affiliation:
Department of Physics, North Eastern Hill University, Shillong, 793022, Meghalaya, India
Get access

Extract

The universal form of embedding function suggested by Banerjea and Smith together with a pair-potential of the Morse form are used to obtain embedded atom method (EAM) potentials for fcc metals: Cu, Ag, Au, Ni, Pd, and Pt. The potential parameters are determined by fitting to the Cauchy pressure (C12C44)/2, shear constant GV = (C11C12 + 3C44)/5, and C44, the cohesive energy and the vacancy formation energy. The obtained parameters are utilized to calculate the unrelaxed divacancy binding energy and the unrelaxed surface energies of three low-index planes. The calculated quantities are in reasonable agreement with the experimental values except perhaps the divacancy energy in a few cases. In a further application, lattice dynamics of these metals are discussed using the present EAM potentials. On comparison with experimental phonons, the agreement is good for Cu, Ag, and Ni, while in the other three metals, Au, Pd, and Pt, the agreement is not so good. The phonon spectra are in reasonable agreement with the earlier calculations. The frequency spectrum and the mean square displacement of an atom in Cu are in agreement with the experiment and other calculated results.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, R. A. and Wilson, W. D., Interatomic Potentials and Simulation of Lattice Defects, edited by Gehlen, P. C., Beeler, J. R., and Jaffee, R. I. (Plenum, New York, 1971).Google Scholar
2.Johnson, R. A., J. Phys. F. 3, 295 (1973).CrossRefGoogle Scholar
3.Baskes, M. I. and Melius, C. F., Phys. Rev. B 20, 3197 (1979).CrossRefGoogle Scholar
4.Norskov, J. K. and Lang, N. D., Phys. Rev. B 21, 2131 (1980).CrossRefGoogle Scholar
5.Stott, M. J. and Zaremba, E., Phys. Rev. B 22, 1564 (1980).CrossRefGoogle Scholar
6.Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
7.Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
8.Daw, M. S., Phys. Rev. B 39, 7441 (1989), and references contained therein.CrossRefGoogle Scholar
9.Hoagland, R. G., Daw, M. S., Foiles, S. M., and Baskes, M. I., J. Mater. Res. 5, 313 (1990).CrossRefGoogle Scholar
10.Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
11.Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
12.Johnson, R. A., Phys. Rev. B 37, 3924 (1988).CrossRefGoogle Scholar
13.Oh, D. J. and Johnson, R. A., J. Mater. Res. 3, 471 (1988).CrossRefGoogle Scholar
14.Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
15.Mei, J., Davenport, J. W., and Fernando, G. W., Phys. Rev. B 43, 4653 (1990).CrossRefGoogle Scholar
16.Jacobson, K. W., Norskov, J. K., and Puska, M. J., Phys. Rev. B 35, 7423 (1987).CrossRefGoogle Scholar
17.Puska, M. J., Nieminen, R. M., and Manninen, M., Phys. Rev. B 24, 3037 (1981).CrossRefGoogle Scholar
18.Banerjea, A. and Smith, J. R., Phys. Rev. B 37, 6632 (1988).CrossRefGoogle Scholar
19.Johnson, R. A. and Oh, D. J., J. Mater. Res. 4, 1195 (1989).CrossRefGoogle Scholar
20.Foiles, S. M., Phys. Rev. B 32, 3409 (1986).CrossRefGoogle Scholar
21.Oh, D. J. and Johnson, R. A., Atomistic Simulation of Materials, edited by Vitek, V. and Srolovitz, D. (Plenum, New York, 1989), p. 233.CrossRefGoogle Scholar
22.Baskes, M. I., Phys. Rev. B 46, 2727 (1992).CrossRefGoogle Scholar
23.Clementi, E. and Roetti, C., At. Data Nucl. Data Tables 14, 177 (1974);CrossRefGoogle Scholar
McLean, A. D. and McLean, R. S., At. Data Nucl. Data Tables 26, 197 (1981).CrossRefGoogle Scholar
24.Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties (Hand Book, Cambridge, MA, 1971).Google Scholar
25.Bulluffi, R. W., J. Nucl. Mater. 69/70, 240 (1978).CrossRefGoogle Scholar
26.Siegel, R. W., J. Nucl. Mater. 69/70, 117 (1978).CrossRefGoogle Scholar
27.Wycisk, W. and Feller-Kniepmeier, M., J. Nucl. Mater. 69/70, 616 (1978).CrossRefGoogle Scholar
28.Kraftmakher, Y. A. and Strelkov, P. G., in Vacancies and Interstitials in Metals, edited by Seeger, A., Schmacher, D., Schilling, W., and Diehl, J. (North-Holland, Amsterdam), p. 59.Google Scholar
29.Pasianot, R., Farkas, D., and Savino, E. J., Phys. Rev. B 43, 6952 (1991).CrossRefGoogle Scholar
30.Adams, J. B., Foiles, S. M., and Wolfer, W. G., J. Mater. Res. 4, 102 (1989).CrossRefGoogle Scholar
31.Foiles, S. M., Phys. Rev. B 32, 7685 (1985).CrossRefGoogle Scholar
32.Voter, A. F. and Chen, S. P., in Characterization of Defects in Materials, edited by Siegel, R. W., Weertman, J. R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.Google Scholar
33.Ecolessi, F., Tossati, E., and Perrinello, M., Phys. Rev. Lett. 57, 719 (1986).CrossRefGoogle Scholar
34.Johnson, R. A., Phys. Rev. B 41, 9717 (1990).CrossRefGoogle Scholar
35.Foiles, S. M. and Adams, J. B., Phys. Rev. B 40, 5909 (1989), and references therein.CrossRefGoogle Scholar
36.Klemradt, U., Drittler, B., Hoshino, T., Zeller, R., and Dederichs, P. H., Phys. Rev. B 43, 9487 (1991).CrossRefGoogle Scholar
37.Nicklow, R. M., Gilat, G., Smith, H. J., Raubenheimer, , and Wilkinson, M. K., Phys. Rev. 164, 922 (1967).CrossRefGoogle Scholar
38.Kamitakahara, W. A. and Brockhouse, B. N., Phys. Lett. 29A, 639 (1969).CrossRefGoogle Scholar
39.Lynn, J. W., Smith, H. G., and Nicklow, R. M., Phys. Rev. B 8, 3493 (1973).CrossRefGoogle Scholar
40.Birgeneau, R. J., Cordes, J., Dolling, G., and Woods, A. B. D., Phys. Rev. 136, A1359 (1964).CrossRefGoogle Scholar
41.Miller, A. P. and Brockhouse, B. N., Can J. Phys. 49, 704 (1971).CrossRefGoogle Scholar
42.Dutton, D. H. and Brockhouse, B. N., Can. J. Phys. 50, 2915 (1972).CrossRefGoogle Scholar
43.Baskes, M. I., Nelson, J. S., and Wright, A. F., Phys. Rev. B 40, 6085 (1989);CrossRefGoogle Scholar
Baskes, M. I., Phys. Rev. B 46, 2727 (1992).CrossRefGoogle Scholar
44.Daw, M. S. and Hatcher, R. D., Solid State Commun. 56, 697 (1985).CrossRefGoogle Scholar
45.Nelson, J. S., Sowa, E. C., and Daw, M. S., Phys. Rev. Lett. 61, 1977 (1988).CrossRefGoogle Scholar
46.Rebonato, R. and Broughton, J. Q., Philos. Mag. Lett. 55, 225 (1987).CrossRefGoogle Scholar
47.Eridon, J., Atomistic Simulation of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D. J. (Plenum, New York, 1989), p. 211;CrossRefGoogle Scholar
Eridon, J. and Rao, S., Philos. Mag. 59, 31 (1989).Google Scholar
48.Martin, C. J. and O'Connor, D. A., Phys. Rev. B 8, 3493 (1977).Google Scholar
49.Metals Reference Book, edited by Smith, C. J. (Butterworth, London, 1976), 5th ed., p. 186, as quoted in Ref. 22.Google Scholar