Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:48:15.399Z Has data issue: false hasContentIssue false

Analysis of the fluoride effect on the phase-selective growth of TlBa2Ca2Cu3O9−x thin films: Phase evolution and microstructure development

Published online by Cambridge University Press:  31 January 2011

Richard J. McNeely
Affiliation:
Department of Chemistry and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3113
John A. Belot
Affiliation:
Department of Chemistry and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3113
Tobin J. Marks
Affiliation:
Department of Chemistry and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3113
Yanguo Wang
Affiliation:
Department of Materials Science and Engineering and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3108
Vinayak P. Dravid
Affiliation:
Department of Materials Science and Engineering and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3108
Michael P. Chudzik
Affiliation:
Department of Electrical and Computer Engineering and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3118
Carl R. Kannewurf
Affiliation:
Department of Electrical and Computer Engineering and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3118
Get access

Abstract

Phase-selective growth of TlBa2Ca2Cu3O9−x films is greatly enhanced by annealing chemical vapor deposition derived BaCaCuO(F) precursor films in the presence of TlF. Nucleation of superconducting phases (≥840 °C under O2) progresses in the order 2212 → 2223 → 1212 → 1223. Annealing at 855 °C results in well-defined platelet grains, a significant number of which are a-axis oriented. Residual fluoride is not detectable at any stage of the annealing process. Thin films synthesized by TlF annealing differ markedly from films processed in the presence of Tl2O3 with Tc = 103 K and Jc > 105 A/cm2 (5 K, 4.5 T).

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Selvamanickam, V., Pfaffenbach, K., Kirchoff, D., Gardner, M., Hazelton, D.W., and Haldar, P., IEEE Trans. Appl. Supercond. 7, 1953 (1997).Google Scholar
2.Goyal, A., Norton, D.P., Kroeger, D.M., Christen, D.K., Paramanthan, M., Specht, E.D., Budhai, J.D., He, Q., Saffian, B., List, F.A., Lee, D.F., Hatfield, E., Martin, P.M., Klabunde, C.E., Mathis, J., and Park, C., J. Mater. Res. 12, 2924 (1997).Google Scholar
3.Moore, J.C., Hyland, D., Fox, S., Naylor, M.J., Wivell, S., and Grovenor, C.R.M, IEEE Trans. Appl. Supercond. 7, 1961 (1997).CrossRefGoogle Scholar
4.Ren, Z.F., Li, W., Wang, D.Z., Lao, J.Y., Wang, J.H., Paranthaman, M., Verebelyi, D.T., and Christen, D.K., Physica C 30, 149 (1998).CrossRefGoogle Scholar
5.Siegal, M.P., Venturini, E.L., Morosin, B., and Aselage, T.L., J. Mater. Res. 12, 2825 (1997).Google Scholar
6.McNeely, R.J., Belot, J.A., Hinds, B.J., Marks, T.J., Schindler, J.L., Chudzik, M.P., Kannewurf, C.R., Zhang, X.F., and Miller, D.J., Appl. Phys. Lett. 71, 1243 (1997).CrossRefGoogle Scholar
7.Juang, J.Y., Horng, J.H., Chen, S.P., Fu, C.M., Wu, K.H., Uen, M., and Gou, Y.S., Appl. Phys. Lett. 66, 885 (1995).Google Scholar
8.Siegal, M.P., Overmyer, D.L., Venturini, E.L., Newcomer, P.P., Dunn, R., Dominguez, F., Padilla, R.R., and Sokolowski, S.S., IEEE Trans. Appl. Supercond. 7, 1881 (1997).CrossRefGoogle Scholar
9.Francesconi, M.G. and Graves, C., Supercond. Sci. Technol. 10, A29 (1997).Google Scholar
10.Davies, P.K., Stuart, J.A., White, D., Lee, C., Chaikin, P.M., Naughton, M.J., Yu, R.C., and Ehrenkaufer, R.L., Solid State Commun. 64, 1441 (1987).CrossRefGoogle Scholar
11.Tissue, B.M., Cirillo, K.M., Wright, J.C., Daeumling, M., and Larbalestier, D.C., Solid State Commun. 65, 51 (1988).CrossRefGoogle Scholar
12.Changkang, C., Chowdhury, A.J.S, Yongle, H., Spears, M., Hodby, J.W., Wanklyn, B.M., Narlikar, A.V.L, and Samanta, S.B., J. Mater. Sci. Lett. 15, 886 (1996).Google Scholar
13.Changkang, C., Chowdhury, A.J.S, Yongle, H., Spears, M., Hodby, J.W., and Wanklyn, B.M., Supercond. Sci. Technol. 7, 795 (1994).CrossRefGoogle Scholar
14.Abakumov, A.M., Rozova, M.G., Shpanchenko, R.V., Kovba, M.L., Putilin, S.N., Antipov, E.V., Lebedev, O.I., Van Tendeloo, G., Kopnin, E.M., and Karpinski, J., Physica C 301, 155 (1998).Google Scholar
15.Al-Mamouri, M., Edwards, P.P., Greaves, C., and Slaski, M., Nature 369, 382 (1994).CrossRefGoogle Scholar
16.Watanabe, K., Supercond. Sci. Technol. 11, 843 (1998).CrossRefGoogle Scholar
17.Wang, Y.T. and Hermann, A.M., Physica C 254, 1 (1995).CrossRefGoogle Scholar
18.Wang, X. G., Huang, Z., and Yuan, L., Physica C 253, 254 (1995).Google Scholar
19.Peacock, G.B., Fletcher, A., Slaski, M., Gameson, I., Capponi, J.J., and Edwards, P.P., J. Supercond. 11, 127 (1998).Google Scholar
20.Xin, Y., Wong, K.W., Sun, G.F., and Lu, D.F., Solid State Commun. 87, 1061 (1993).Google Scholar
21.Sun, G.F., Xin, Y., Lu, D.F., Wong, K.W., Zhang, Y., and Stevens, J.G., Solid State Commun. 101, 849 (1997).Google Scholar
22.Hamdan, N.M., Ziq, Kh.A., and Al-Harthi, A.S., J. Low Temp. Phys. 105, 1493 (1996).Google Scholar
23.Hamdan, N.M., Al-Harthi, A.S., and Choudhary, M.F., Physica C 282–287, 2273 (1997).Google Scholar
24.Hamdan, N.M., Ziq, Kh.A., Al-Harthi, A.S., and Shirokoff, J., J. Supercond. 11, 95 (1998).Google Scholar
25.Aselage, T.L., Venturini, E.L., Voigt, J.A., and Miller, D.L., J. Mater. Res. 11, 1635 (1996).Google Scholar
26.Kikuchi, A., Kinoshita, T., Nishikawa, N., Komiya, S., and Tachikawa, K., Jpn. J. Appl. Phys. 34, L167 (1995).Google Scholar
27.Tachikawa, K., Kikuchi, A., and Nakamura, T., IEEE Trans. Appl. Supercond. 7, 1957 (1997).CrossRefGoogle Scholar
28.Sung, Y.S., Zhang, X.F., Kostic, P.J., and Miller, D.L., Appl. Phys. Lett. 69, 3420 (1996).Google Scholar
29.Bellingeri, E., Gladyshevskii, R.E., Marti, F., Dhallé, M., and Flükiger, R., Supercond. Sci. Technol. 11, 810 (1998).Google Scholar
30.Gladyshevskii, R.E., Bellingeri, E., Marti, F., and Flükiger, F., J. Supercond. 11, 109 (1998).Google Scholar
31.Holstein, W.L. and Parisi, L.A., J. Mater. Res. 11, 1349 (1996).CrossRefGoogle Scholar
32.Lanham, M., James, T.W., Eddy, M., Lange, F.F, and Clarke, D.R., Appl. Phys. Lett. 62, 3028 (1993).Google Scholar
33.Hinds, B.J., McNeely, R.J., Studebaker, D.B., Marks, T.J., Hogan, T.P., Schindler, J.L., Kannewurf, C.R., Zhang, X.F., and Miller, D.L., J. Mater. Res. 12, 1214 (1997).Google Scholar
34.Hinds, B.J., Schulz, D.L., Neumayer, D.A., Han, B., Marks, T.J., Wang, Y.Y., Dravid, V.P., Schindler, J.L., Hogan, T.P., and Kannewurf, C.R., Appl. Phys. Lett. 65, 213 (1994).Google Scholar
35.Neumayer, D.A., Studebaker, D.B., Hinds, B.J., Stern, C.L., and Marks, T.J., Chem. Mater. 6, 878 (1994).Google Scholar
36.Schulz, D.L., Neumayer, D.A., and Marks, T.J., Inorg. Synth. 31, 1 (1997).Google Scholar
37.Wahlbeck, P.G., Richards, R.R., and Myers, D.L., J. Chem. Phys. 95, 9122 (1991).Google Scholar
38.Reschauer, N., Spreitzer, U., Brozio, W., Piehler, A., and Renk, K.F., Appl. Phys. lett. 68, 1000 (1996).Google Scholar
39.Myers, K.E. and Bao, L., J. Supercond. 11, 129 (1998).Google Scholar
40.Siegal, M.P., Overmyer, D.L., Venturini, E.L., Dominguez, F., and Padilla, R.R., J. Mater. Res. 13, 3349 (1998).Google Scholar
41.Schindler, J.L., Ph.D. Thesis, Northwestern University (1995).Google Scholar
42.Lyding, L.W., Marcy, H.O., Marks, T.J., and Kannewurf, C.R., IEEE Trans. Instrum. Meas. 37, 76 (1988).CrossRefGoogle Scholar
43.Bean, C.P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
44.Triscone, G., Junod, A., and Gladyshevskii, R.E., Physica C 264, 233 (1996).CrossRefGoogle Scholar
45.Ruckenstein, E. and Cheung, C.T., J. Mater. Res. 4, 1116 (1989).Google Scholar
46.Aselage, T.L., Voigt, J.A., and Keefer, K.D., J. Am. Ceram. Soc. 73, 3345 (1990).CrossRefGoogle Scholar
47.Malandrino, G., Condorelli, G.G., Fragalà, I.L., Miletto Granozio, F., Scotti di Uccio, U., and Valentino, M., Supercond. Sci. Technol. 9, 570 (1996).Google Scholar
48.O'Connor, J.D., Dew-Hughes, D., Reschauer, N., Brozio, W., Wagner, H.H., Renk, K.F., Goringe, M.J., Grovenor, C.R.M, and Kaiser, T., Physica C 302, 277 (1998).Google Scholar
49.Malandrino, G., Frassica, A., Condorelli, G.G., Lanza, G., and Fragalà, I.L., J. Alloys Cmpd. 215, 314 (1997).CrossRefGoogle Scholar
50.Chou, H., Chow, T.H., Wang, K.K., and Chau, Z.M., Appl. Phys. Lett. 65, 1045 (1994).Google Scholar
51.Bruchlos, H., Huber, S., Bruchlos, G., and Manzel, M., J. Supercond. 11, 81 (1998).CrossRefGoogle Scholar
52.Liu, X.D., Peng, H.T., Zhou, S.H., Peng, Q.Y., and Yang, G.W., Physica C 256, 353 (1996).CrossRefGoogle Scholar
53.Cubicciotti, D. and Keneshea, F.J., J. Phys. Chem. 71, 808 (1967).Google Scholar
54.Whalbeck, P.G., Richards, R.R., and Myers, D.L., J. Chem. Phys. 95, 9122 (1991).CrossRefGoogle Scholar
55.Holstein, W.L., J. Phys. Chem. 97, 4224 (1993).CrossRefGoogle Scholar
56.Hedvall, J.A., Garping, E., Lindekrantz, N., and Nelson, L., Z. Anorg. Allg. Chem. 197, 399 (1931).CrossRefGoogle Scholar
57.Lanham, M., James, T.W., Eddy, M., Lange, F.F., and Clarke, D.R., Appl. Phys. Lett. 62, 3028 (1993).CrossRefGoogle Scholar
58.Tachikawa, K., Kikuchi, A., Nakamura, T., and Komiya, S., J. Supercond. 11, 147 (1998).Google Scholar
59.Cox, D.E., Torardi, C.C., Subramanian, M.A., Gopalakrishnan, J., and Sleight, A.W., Phys. Rev. B 38, 6624 (1988).Google Scholar
60.Jung, D., Whangbo, M.H., Herron, N., and Torardi, C.C., Physica C 160, 381 (1989).Google Scholar
61.Karppinen, M. and Yamauchi, H., J. Supercond. 11, 39 (1998).Google Scholar
62.Morosin, B. and Venturini, E.L., Phys. Rev. B 46, 510 (1992).CrossRefGoogle Scholar
63.Suzuki, T., Nagoshi, M., Fukuda, Y., Syono, Y., Kikuchi, M., Kobayashi, N., and Tachiki, M, Phys. Rev. B 40, 5184 (1989).Google Scholar
64.Morosin, B., Venturini, E.L., and Ginley, D.S., Physica C 175, 241 (1991).CrossRefGoogle Scholar
65.Morosin, B., Venurini, E.L., and Ginley, D.S., Physica C 183, 90 (1991).Google Scholar
66.Sequeira, A., Rajagopal, H., Gopalakrishnan, I.K., Sastry, P.V.P.S.S, Phatak, G.M., Yakhmi, J.V., and Iyer, R.M., Physica C 156, 599 (1988).Google Scholar
67.Shannon, R.D. and Prewitt, C.T., Acta Crystallogr. B 25, 925 (1969).Google Scholar