Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:59:12.113Z Has data issue: false hasContentIssue false

Analysis of a ceramic/metal laminate under thermal shock

Published online by Cambridge University Press:  26 November 2012

D. Sherman
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
D. Schlumm
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
Get access

Abstract

A ceramic/metal laminated system has lately been proposed by the authors. It is capable of maintaining high mechanical strength and structural integrity after high-temperature thermal shock. In this investigation, a multilayered, multimaterial system with strong interface, subjected to thermal shock loading, was analyzed. The analysis was based on a 1-D finite difference scheme and considers the thermal residual stresses. Using a failure criterion based on crack initiation, the number of broken layers due to thermal shock and the residual mechanical strength at room temperature was determined. A comparison with experimental results of three different lay-ups was made, demonstrating the ability of the program to predict the experimental results. The program was thus shown to be a significant tool for designing multimaterial multilayered systems for thermal shock applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Upadhya, K., Yang, J.M., and Hoffman, W.P., J. Am. Ceram. Soc. Bull. 75, 51 (1997).Google Scholar
2.Claussen, N. and Hasselman, D.P.H., in Thermal Stresses in Severe Environments, edited by Hasselman, D.P.H. and Heller, R.A. (Plenum Publishing Corp., New York, 1980), p. 381.CrossRefGoogle Scholar
3.Becher, P.F. and Warwick, W.H., in NATO ASI Series, Series E: Applied Sci. Vol. 241, edited by Schneider, G.A. and Petzow, G. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993), p. 37.Google Scholar
4.Hoffmann, M.J., Schneider, G.A., and Petzow, G., in NATO ASI Series, Series E: Applied Science Vol. 241, edited by Schneider, G.A. and Petzow, G. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993), p. 49.Google Scholar
5.Swain, M.V., J. Am. Ceram. Soc. 73, 621 (1990).Google Scholar
6.Miura, M., Yogo, T., and Hirano, S.J., J. Ceram. Soc. Jpn. 101, 1281 (1993).CrossRefGoogle Scholar
7.Clegg, W.J., Acta Metall. Mater. 40, 3093 (1992).CrossRefGoogle Scholar
8.Clegg, W.J., Kendall, K., Alford, N.M., Birchall, D., and Button, T.W., Nature 347, 455 (1990).Google Scholar
9.Cutler, W.A., Zok, F.W., and Lange, F.F., J. Am. Ceram. Soc. 79, 1825 (1996).Google Scholar
10.Evans, A.G., Bartlett, A., Davis, J.B., Flinn, B.D., Turner, M., and Reimanis, I.E., Scr. Metall. Mater. 25, 1003 (1991).CrossRefGoogle Scholar
11.Reimanis, I.E., Dalgleish, B.J., and Evans, A.G., Acta Mater. 39, 3133 (1991).CrossRefGoogle Scholar
12.Oh, T.S., Rodel, J., Cannon, R.M., and Ritchie, R.O., Acta Mater. 36, 2083 (1988).CrossRefGoogle Scholar
13.Case, E.D., Kim, Y., and Lee, W.J., in NATO ASI Series, Series E: Applied Science Vol. 241, edited by Schneider, G.A. and Petzow, G. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993), p. 393.Google Scholar
14.14. Sato, S., Imamura, I., Kurumada, A., Kawamata, K., Ishida, R., and Awaji, H., in NATO ASI Series, Series E: Applied Science Vol. 241, edited by Schneider, G.A. and Petzow, G. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993), p. 253.Google Scholar
15.Sherman, D. and Schlumm, D., J. Mater. Res. 14, 3544 (1999).Google Scholar
16.Timoshenko, S., J. Opt. Soc. Am. 11, 233 (1925).CrossRefGoogle Scholar
17.Timoshenko, S., Strength of Materials (Van Nostrand Co. Inc., New York, 1954), Part II, p. 129.Google Scholar
18.Bagchi, A., Lucas, G.E., Suo, Z., and Evans, A.G., J. Mater. Res. 9, 1734 (1994).CrossRefGoogle Scholar
19.Holman, J.P., Heat Transfer, 6th ed. (McGraw Hill, New York, 1986).Google Scholar
20.Lu, T.J. and Fleck, N.A., Acta Metall. 46, 4755 (1998).Google Scholar
21.Manson, S.S., Thermal Stress and Low Cycle Fatigue (McGraw Hill, New York, 1966).CrossRefGoogle Scholar
22.Sherman, D. and Shlumm, D., Scr. Metall. 42, 819 (2000).Google Scholar
23.Nied, H.F., J. Therm. Stresses 6, 217 (1983).CrossRefGoogle Scholar
24.Evans, A.G. and Hutchinson, J.W., Acta Metall. 43, 2507 (1995).Google Scholar
25.Lee, W.J., Kim, Y., and Case, E.D., J. Mater. Sci. 28, 2079 (1993).CrossRefGoogle Scholar
26.Wang, H. and Singh, R.N., Int. Mater. Rev. 39, 228 (1994).Google Scholar
27.Pompe, W.E., in NATO ASI Series, Series E: Applied Science Vol. 241, edited by Schneider, G.A. and Petzow, G. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993), p. 3.Google Scholar