Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T00:39:07.085Z Has data issue: false hasContentIssue false

An X-ray scattering and electron microscopy study of methylammonium bismuth perovskites for solar cell applications

Published online by Cambridge University Press:  10 January 2017

Chan Kyu Kwak
Affiliation:
Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
Alex T. Barrows
Affiliation:
Department of Physics & Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K.
Andrew J. Pearson
Affiliation:
Optoelectronics Group, Cavendish Laboratory, Cambridge CB3 0HE, U.K.
David G. Lidzey
Affiliation:
Department of Physics & Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K.
Alan D.F. Dunbar*
Affiliation:
Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Photovoltaics made from organic–inorganic hybrid perovskite semiconductors are attracting significant interest due to their ability to harvest sunlight with remarkable efficiency. The presence of lead in the best performing devices raises concerns regarding their toxicity, a problem that may create barriers to commercialization. Hybrid perovskites with reduced lead content are being investigated to overcome this issue and here we evaluate bismuth as a possible lead substitute. For a series of hybrid perovskite films with the general composition CH3NH3(Pb y Bi1−y )I3−x Cl x , we characterize their optical and structural properties using UV–Vis spectroscopy, scanning electron microscopy and grazing incidence wide angle X-ray scattering. We show that they form crystalline structures with an optical band gap, around 2 eV for CH3NH3BiI3. However, preliminary solar cell tests show low power conversion efficiencies (<0.01%) due to both incomplete precursor conversion and material de-wetting from the substrate. The overall outcome is severely limited photocurrent. With current processing methods the general applicability of hybrid bismuth perovskites in photovoltaics may be limited.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Chris Nicklin

References

REFERENCES

Shaheen, S.E., Ginley, D.S., and Jabbour, G.E.: Organic-based photovoltaics: Toward low-cost power generation. MRS Bull. 30(1), 10 (2005).Google Scholar
Liu, D.Y. and Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133 (2014).Google Scholar
Liu, M.Z., Johnston, M.B., and Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013).Google Scholar
Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316 (2013).CrossRefGoogle ScholarPubMed
Ball, J.M., Lee, M.M., Hey, A., and Snaith, H.J.: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739 (2013).Google Scholar
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643 (2012).Google Scholar
Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J.: Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982 (2014).Google Scholar
Pellet, N., Gao, P., Gregori, G., Yang, T.Y., Nazeeruddin, M.K., Maier, J., and Gratzel, M.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem., Int. Ed. 53(12), 3151 (2014).Google Scholar
Pang, S.P., Hu, H., Zhang, J.L., Lv, S.L., Yu, Y.M., Wei, F., Qin, T.S., Xu, H.X., Liu, Z.H., and Cui, G.L.: NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485 (2014).CrossRefGoogle Scholar
Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., and Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764 (2013).CrossRefGoogle ScholarPubMed
Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., and Snaith, H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061 (2014).Google Scholar
NREL: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, (National Renewable Energy Laboratory, Golden, CO).Google Scholar
Landrigan, P.J.: Toxicity of lead at low-dose. Br. J. Ind. Med. 46(9), 593 (1989).Google Scholar
Flora, G., Gupta, D., and Tiwari, A.: Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 5(2), 47 (2012).Google Scholar
Babayigit, A., Ethirajan, A., Muller, M., and Conings, B.: Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247 (2016).Google Scholar
Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T.L., and Hayase, S.: CH3NH3SnxPb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5(6), 1004 (2014).Google Scholar
Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., and Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489 (2014).Google Scholar
Travis, W., Glover, E.N.K., Bronstein, H., Scanlon, D.O., and Palgrave, R.G.: On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 7, 4548 (2016).Google Scholar
Park, B.W., Philippe, B., Zhang, X.L., Rensmo, H., Boschloo, G., and Johansson, E.M.J.: Bismuth based hybrid perovskites A(3)Bi(2)I(9) (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27(43), 6806 (2015).Google Scholar
Slavney, A.H., Hu, T., Lindenberg, A.M., and Karunadasa, H.I.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138 (2016).Google Scholar
Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., and Mosca, R.: MAPbl(3−x)Cl x mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties. Chem. Mater. 25(22), 4613 (2013).Google Scholar
Kulkarni, S.A., Baikie, T., Boix, P.P., Yantara, N., Mathews, N., and Mhaisalkar, S.: Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2(24), 9221 (2014).Google Scholar
Bi, C., Shao, Y.C., Yuan, Y.B., Xiao, Z.G., Wang, C.G., Gao, Y.L., and Huang, J.S.: Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2(43), 18508 (2014).Google Scholar
Tian, Y. and Scheblykin, I.G.: Artifacts in absorption measurements of organometal halide perovskite materials: What are the real spectra? J. Phys. Chem. Lett. 6(17), 3466 (2015).Google Scholar
Ondarçuhu, T. and Aimé, J.P.: Nanoscale Liquid Interfaces: Wetting, Patterning and Force Microscopy at the Molecular Scale (Pan Stanford publishing, Singapore, 2013).Google Scholar
Zhao, Y.X. and Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH(3)NH(3)Pbl(3): Structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118(18), 9412 (2014).CrossRefGoogle Scholar
Yu, H., Wang, F., Xie, F.Y., Li, W.W., Chen, J., and Zhao, N.: The role of chlorine in the formation process of “CH3NH3PbI3−x Cl(x)” perovskite. Adv. Funct. Mater. 24(45), 7102 (2014).Google Scholar
Unger, E.L., Bowring, A.R., Tassone, C.J., Pool, V.L., Gold-Parker, A., Cheacharoen, R., Stone, K.H., Hoke, E.T., Toney, M.F., and McGehee, M.D.: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26(24), 7158 (2014).Google Scholar
Zhang, L.Q., Zhang, X.W., Yin, Z.G., Jiang, Q., Liu, X., Meng, J.H., Zhao, Y.J., and Wang, H.L.: Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. J. Mater. Chem. A 3(23), 12133 (2015).Google Scholar
Tan, K.W., Moore, D.T., Saliba, M., Sai, H., Estroff, L.A., Hanrath, T., Snaith, H.J., and Wiesner, U.: Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 8(5), 4730 (2014).Google Scholar
Park, B.W., Philippe, B., Gustafsson, T., Sveinbjornsson, K., Hagfeldt, A., Johansson, E.M.J., and Boschloo, G.: Enhanced crystallinity in organic–inorganic lead halide perovskites on mesoporous TiO2 via disorder-order phase transition. Chem. Mater. 26(15), 4466 (2014).CrossRefGoogle Scholar
Baikie, T., Fang, Y.N., Kadro, J.M., Schreyer, M., Wei, F.X., Mhaisalkar, S.G., Graetzel, M., and White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628 (2013).Google Scholar
Im, J.H., Lee, C.R., Lee, J.W., Park, S.W., and Park, N.G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088 (2011).Google Scholar
Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019 (2013).Google Scholar
Yoon, S.J., Stamplecoskie, K.G., and Kamat, P.V.: How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7(7), 1368 (2016).Google Scholar
CrystalMaker Software Limited: http://www.crystalmaker.com/crystaldiffract/. Centre for Innovation & Enterprise, Oxford University Begbroke Science Park, Woodstock Road Begbroke, Oxfordshire, OX5 1PF UK.Google Scholar
Barrows, A.T., Pearson, A.J., Kwak, C.K., Dunbar, A.D.F., Buckley, A.R., and Lidzey, D.G.: Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944 (2014).Google Scholar
Supplementary material: File

Kwak supplementary material

Figures S1-S7

Download Kwak supplementary material(File)
File 16.1 MB
Supplementary material: Image

Kwak supplementary material

Figure image

Download Kwak supplementary material(Image)
Image 1.9 MB
Supplementary material: Image

Kwak supplementary material

Figure image

Download Kwak supplementary material(Image)
Image 2 MB
Supplementary material: Image

Kwak supplementary material

Figure image

Download Kwak supplementary material(Image)
Image 2.7 MB
Supplementary material: Image

Kwak supplementary material

Figure image

Download Kwak supplementary material(Image)
Image 2.7 MB
Supplementary material: Image

Kwak supplementary material

Figure image

Download Kwak supplementary material(Image)
Image 2.7 MB
Supplementary material: Image

Kwak supplementary material

Figure image

Download Kwak supplementary material(Image)
Image 1.8 MB
Supplementary material: Image

Kwak supplementary material

Figure image

Download Kwak supplementary material(Image)
Image 1.9 MB