Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:07:21.875Z Has data issue: false hasContentIssue false

An x-ray method for direct determination of the strain state and strain relaxation in micron-scale passivated metallization lines during thermal cycling

Published online by Cambridge University Press:  03 March 2011

Paul R. Besser*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
Sean Brennan
Affiliation:
Stanford Synchrotron Radiation Laboratory, Menlo Park, California 94025
John C. Bravman
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
*
a)Currently with Advanced Micro Devices, Integrated Technology Division, P.O. Box 3453, Mailstop 160, Sunnyvale, California 94088–3453.
Get access

Abstract

We describe a method for directly determining the strain state of passivated metal lines. Synchrotron radiation in the grazing incidence geometry is used to directly measure the in-plane interplanar spacing along the length and width of the lines, while the strain normal to the surface of the line is measured using conventional diffraction methods. The entire strain state is thereby defined. Previous work has measured out-of-plane reflections, fit them to a straight line as a trigonometric function of the angle of orientation, and extrapolated to determine the principal strains. The equivalence of the two x-ray methods on the same sample is demonstrated at room temperature before and after thermal cycling. For short time strain relaxation experiments during thermal cycling, measurement of the three principal strains leads to the direct calculation of the stress relaxation. We apply the strain determination technique to Al-0.5% Cu lines passivated with Si3N4 as the lines are thermally cycled from room temperature to 450 °C and back. The strain state, stress state, and strain relaxation of the lines are calculated at several temperatures during thermal cycling.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Flinn, P. A. and Waychunas, G. A., J. Vac. Sci. Technol. B 6, 17491755 (1988).CrossRefGoogle Scholar
2Venkatraman, R., Bravman, J. C., Nix, W. D., Davies, P. W., Flinn, P. A., and Fraser, D. B., J. Elec. Mater. 19, 12311238 (1990).CrossRefGoogle Scholar
3Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Reading, MA, 1978).Google Scholar
4Noyan, I. C., Adv. X-Ray Anal. 28, 281288 (1985).Google Scholar
5Segmüller, A. and Murakami, M., Treatise on Materials Science and Technology (Academic Press, Inc., San Diego, CA, 1988), Vol. 27, pp. 143200.Google Scholar
6James, M. R. and Cohen, J. B., 1980 Treatise on Mater. Sci. Technol. 19A, 162 (1980).Google Scholar
7Greenebaum, B., Sauter, A. I., Flinn, P. A., and Nix, W. D., Appl. Phys. Lett. 58 (17), 18451847 (1991).CrossRefGoogle Scholar
8Hinode, K., Asano, I., and Homma, Y., IEEE Trans. Elect. Dev. 36 (6), 10501055 (1989).CrossRefGoogle Scholar
9Yue, J. T., Funsten, W. P., and Taylor, R. V., IEEE Int. Reliability Phys. Symp. Proc. (IEEE, New York, 1985), pp. 18.Google Scholar
10Flinn, P. A. and Chiang, C., J. Appl. Phys. 67, 29272931 (1990).CrossRefGoogle Scholar
11Tezaki, A., Mineta, T., Egawa, H., and Noguchi, T., IEEE Int. Reliability Phys. Symp. Proc. (IEEE, New York, 1990), pp. 221229.Google Scholar
12Flinn, P. A., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), pp. 312.Google Scholar
13Radler, M. J., Crowder, C. E., Shaffer, E. O., and Townsend, P. H., in Electronic Packaging Materials Science VI, edited by Ho, P. S., Jackson, K. A., Li, C-Y., and Lipscomb, G. F. (Mater. Res. Soc. Symp. Proc. 264, Pittsburgh, PA, 1992).Google Scholar
14Nye, J. F., Physical Properties of Crystals (Oxford University Press, Oxford, 1957).Google Scholar
15Landolt–Bornstein, edited by Hellwege, K-H. and Hellwege, A. M. (Springer-Verlag, Berlin, 1979), Vol. III–2.Google Scholar
16Fuoss, P. H. and Brennan, S., Ann. Rev. Mater. Sci. 20, 365390 (1990).CrossRefGoogle Scholar
17Toney, M. F., Huang, T. C., Brennan, S., and Rek, Z., J. Mater. Res. 3, 351356 (1988).CrossRefGoogle Scholar
18Doerner, M. F. and Brennan, S., J. Appl. Phys. 63, 126131 (1988).CrossRefGoogle Scholar
19Shute, C. J. and Cohen, J. B., J. Appl. Phys. 70 (4), 21042110 (1991).CrossRefGoogle Scholar
20Venkatraman, R., Besser, P. R., Brennan, S., and Bravman, J. C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), pp. 227232.Google Scholar
21Venkatraman, R., Besser, P. R., Brennan, S., and Bravman, J. C., J. Mater. Res. 9 (1994, in press).CrossRefGoogle Scholar
22Besser, P. R., Venkatraman, R., Brennan, S., and Bravman, J. C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), pp. 233238.Google Scholar
23Brennan, S., Surf. Sci. 152/153, 19 (1985).CrossRefGoogle Scholar
24Vineyard, G. H., Phys. Rev. B 26, 41464159 (1982).CrossRefGoogle Scholar
25Vassamillet, L. F. and King, H. W., Adv. X-ray Anal. 6, 142157 (1963).Google Scholar
26French, D. N., Am. Chem. Soc. 52, 271275 (1969).Google Scholar
27Besser, P. R., Sauter Mack, A., Fraser, D. B., and Bravman, J. C., J. Electrochem. Soc. 140 (6), 17691772 (1993).CrossRefGoogle Scholar
28Besser, P. R., Madden, M. C., and Flinn, P. A., J. Appl. Phys. 72 (8), 37923797 (1992).CrossRefGoogle Scholar
29Madden, M. C., Abratowski, E. A., Marieb, T., and Flinn, P. A., in Materials Reliability in Microelectronics II, edited by Thompson, C. V. and Lloyd, J. R. (Mater. Res. Soc. Symp. Proc. 265, Pittsburgh, PA, 1992), pp. 3338.Google Scholar
30Nix, W. D., Metall. Trans. A 20A, 22172245 (1989).CrossRefGoogle Scholar