Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T06:23:46.625Z Has data issue: false hasContentIssue false

An unexpected phase transformation of ceria nanoparticles in aqueous media

Published online by Cambridge University Press:  08 February 2019

Satyanarayana V.N.T. Kuchibhatla*
Affiliation:
Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
Ajay S. Karakoti
Affiliation:
School of Engineering and Applied Science, Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat 380009, India
Andreas E. Vasdekis
Affiliation:
Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
Charles F. Windisch Jr.
Affiliation:
FCSD, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
Sudipta Seal
Affiliation:
Nanoscience and Technology Center, Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering and College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
Suntharampillai Thevuthasan
Affiliation:
Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
Donald R. Baer
Affiliation:
Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cerium oxide nanoparticles (CNPs) are of significant interest to the scientific community due to their widespread applications in a variety of fields. It is proposed that size-dependent variations in the extent of Ce3+ and Ce4+ oxidation states of cerium in CNPs determine the performance of CNPs in application environments. To obtain greater molecular and structural understanding of chemical state transformations previously reported for ceria of ≈3 nm nanoparticles (CNPs) in response to changing ambient conditions, micro-XRD and Raman measurements were carried out for various solution conditions. The particles were observed to undergo a reversible transformation from a defective ceria structure to a non-ceria amorphous oxyhydroxide/peroxide phase in response to the addition of 30% hydrogen peroxide. For CNPs made up of ∼8 nm crystallites, a partial transformation was observed, and no transformation was observed for CNPs made up of ∼40 nm crystallites. This observation of differences in size-dependent transition behavior may help explain the benefits of using smaller CNPs in applications requiring regenerative property.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Current address: Parisodhana Technologies Pvt., Ltd., Hyderabad, Telangana 500074, India.

c)

Current address: Department of Physics, University of Idaho, Moscow, ID 83844, USA.

d)

Current address: Columbia Basin College, Pasco, WA 99301, USA.

References

Rui, Y., Zhang, P., Zhang, Y., Ma, Y., He, X., Gui, X., Li, Y., Zhang, J., Zheng, L., Chu, S., Guo, Z., Chai, Z., Zhao, Y., and Zhang, Z.: Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ. Pollut. 198, 8 (2015).CrossRefGoogle ScholarPubMed
Baalousha, M., Le Coustumer, P., Jones, I., and Lead, J.R.: Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles. Environ. Chem. 7, 377 (2010).CrossRefGoogle Scholar
Fu, Q., Saltsburg, H., and Flytzani-Stephanopoulos, M.: Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935 (2003).CrossRefGoogle ScholarPubMed
Walkey, C., Das, S., Seal, S., Erlichman, J., Heckman, K., Ghibelli, L., Traversa, E., McGinnis, J.F., and Self, W.T.: Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci.: Nano 2, 33 (2015).Google ScholarPubMed
Lashtabeg, A. and Skinner, S.J.: Solid oxide fuel cells-a challenge for materials chemists. J. Mater. Chem. 16, 3161 (2006).CrossRefGoogle Scholar
Corma, A., Atienzar, P., Garcia, H., and Chane-Ching, J.Y.: Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3, 394 (2004).CrossRefGoogle Scholar
Krenzke, P.T. and Davidson, J.H.: On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: The option of inert-swept reduction. Energy Fuels 29, 1045 (2015).CrossRefGoogle Scholar
Chen, J., Patil, S., Seal, S., and McGinnis, J.F.: Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 1, 142 (2006).CrossRefGoogle ScholarPubMed
Asati, A., Santra, S., Kaittanis, C., and Perez, J.M.: Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4, 5321 (2010).CrossRefGoogle ScholarPubMed
Gagnon, J. and Fromm, K.M.: Toxicity and protective effects of cerium oxide nanoparticles (nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur. J. Inorg. Chem. 2015, 4510 (2015).CrossRefGoogle Scholar
Karakoti, A.S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., Orr, G., Pounds, J.G., Teeguarden, J.G., Thrall, B.D., and Baer, D.R.: Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surf. Interface Anal. 44, 882 (2012).CrossRefGoogle Scholar
Kuchibhatla, S.V.N.T., Karakoti, A.S., Baer, D.R., Samudrala, S., Engelhard, M.H., Amonette, J.E., Thevuthasan, S., and Seal, S.: Influence of aging and environment on nanoparticle chemistry: Implication to confinement effects in nanoceria. J. Phys. Chem. C 116, 14108 (2012).CrossRefGoogle ScholarPubMed
Zhang, P., Ma, Y., Zhang, Z., He, X., Zhang, J., Guo, Z., Tai, R., Zhao, Y., and Chai, Z.: Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6, 9943 (2012).CrossRefGoogle ScholarPubMed
Zhang, J., Naka, T., Ohara, S., Kaneko, K., Trevethan, T., Shluger, A., and Adschiri, T.: Surface ligand assisted valence change in ceria nanocrystals. Phys. Rev. B 84, 045411 (2011).CrossRefGoogle Scholar
Barkam, S., Ortiz, J., Saraf, S., Eliason, N., McCormack, R., Das, S., Gupta, A., Neal, C., Petrovici, A., Hanson, C., Sevilla, M.D., Adhikary, A., and Seal, S.: Modulating the catalytic activity of cerium oxide nanoparticles with the anion of the precursor salt. J. Phys. Chem. C 121, 20039 (2017).CrossRefGoogle ScholarPubMed
Kumar, A., Das, S., Munusamy, P., Self, W., Baer, D.R., Sayle, D.C., and Seal, S.: Behavior of nanoceria in biologically-relevant environments. Environ. Sci.: Nano 1, 516 (2014).Google Scholar
Gangopadhyay, S., Frolov, D.D., Masunov, A.E., and Seal, S.: Structure and properties of cerium oxides in bulk and nanoparticulate forms. J. Alloys Compd. 584, 199 (2014).CrossRefGoogle Scholar
Grassian, V.H.: When size really matters: Size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 112, 18303 (2008).CrossRefGoogle Scholar
Campbell, C.T., Parker, S.C., and Starr, D.E.: The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811 (2002).CrossRefGoogle ScholarPubMed
Candace, S.: Particle Size Matters: Studies Fail to Include Basics for Asserting Toxicity (Small Times Magazine, Ann Arbor, MI, 2006).Google Scholar
Billinge, S.J.L. and Levin, I.: The problem with determining atomic structure at the nanoscale. Science 316, 561 (2007).CrossRefGoogle ScholarPubMed
Tella, M., Auffan, M., Brousset, L., Issartel, J., Kieffer, I., Pailles, C., Morel, E., Santaella, C., Angeletti, B., Artells, E., Rose, J., Thiéry, A., and Bottero, J-Y.: Transfer, transformation, and impacts of ceria nanomaterials in aquatic mesocosms simulating a pond ecosystem. Environ. Sci. Technol. 48, 9004 (2014).Google Scholar
Szymanski, C.J., Munusamy, P., Mihai, C., Xie, Y., Hu, D., Gilles, M.K., Tyliszczak, T., Thevuthasan, S., Baer, D.R., and Orr, G.: Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 62, 147 (2015).CrossRefGoogle ScholarPubMed
Ma, Y., Zhang, P., Zhang, Z., He, X., Zhang, J., Ding, Y., Zhang, J., Zheng, L., Guo, Z., Zhang, L., Chai, Z., and Zhao, Y.: Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ. Sci. Technol. 49, 10667 (2015).CrossRefGoogle ScholarPubMed
Wu, L., Wiesmann, H.J., Moodenbaugh, A.R., Klie, R.F., Zhu, Y., Welch, D.O., and Suenaga, M.: Oxidation state and lattice expansion of CeO2−x nanoparticles as a function of particle size. Phys. Rev. B 69, 125415 (2004).CrossRefGoogle Scholar
Lee, S.S., Song, W., Cho, M., Puppala, H.L., Nguyen, P., Zhu, H., Segatori, L., and Colvin, V.L.: Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7, 9693 (2013).CrossRefGoogle ScholarPubMed
Deshpande, S., Patil, S., Kuchibhatla, S., and Seal, S.: Size dependency variation in the lattice parameter and valency state in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 133113 (2005).CrossRefGoogle Scholar
Zhou, X.H., Wong, L.L., Karakoti, A.S., Seal, S., and McGinnis, J.F.: Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the vldlr knockout mouse. PLoS One 6 e16733 (2011).CrossRefGoogle ScholarPubMed
Alili, L., Sack, M., Karakoti, A.S., Teuber, S., Puschmann, K., Hirst, S.M., Reilly, C.M., Zanger, K., Stahl, W., Das, S., Seal, S., and Brenneisen, P.: Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials 32, 2918 (2011).CrossRefGoogle ScholarPubMed
Karakoti, A., Singh, S., Dowding, J.M., Seal, S., and Self, W.T.: Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39, 4422 (2010).CrossRefGoogle ScholarPubMed
Dowding, J.M., Lubitz, S., Karakoti, A., Kim, A., Seal, S., Ellisman, M., Perkins, G., Bossy-Wetzel, E., and Self, W.: Cerium oxide nanoparticles prevent nitrosative stress in neuronal cell culture model. Free Radicals Biol. Med. 49, S181 (2010).CrossRefGoogle Scholar
Colon, J., Herrera, L., Smith, J., Patil, S., Komanski, C., Kupelian, P., Seal, S., Jenkins, D.W., and Baker, C.H.: Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed. Nanotechnol. Biol. Med. 5, 225 (2009).CrossRefGoogle ScholarPubMed
Baer, D.R.: The chameleon effect: Characterization challenges due to the variability of nanoparticles and their surfaces. Front. Chem. 6 Article 145 (2018).CrossRefGoogle ScholarPubMed
Zhang, F., Wang, P., Koberstein, J., Khalid, S., and Chan, S-W.: Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563, 74 (2004).CrossRefGoogle Scholar
Baer, D.R., Amonette, J.E., Engelhard, M.H., Gaspar, D.J., Karakoti, A.S., Kuchibhatla, S., Nachimuthu, P., Nurmi, J.T., Qiang, Y., Sarathy, V., Seal, S., Sharma, A., Tratnyek, P.G., and Wang, C.M.: Characterization challenges for nanomaterials. Surf. Interface Anal. 40, 529 (2008).CrossRefGoogle Scholar
Baer, D.R., Engelhard, M.H., Johnson, G.E., Laskin, J., Mueller, K., Munusamy, P., Thevuthasan, S., Wang, H., Washton, N., Elder, A., Baisch, B.L., Karakoti, A., Kuchibhatla, S.V.N.T., and Moon, D.W.: Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol., A 31, 050820 (2013).CrossRefGoogle ScholarPubMed
Baer, D.R.: Application of surface analysis methods to nanomaterials: Summary of ISO/TC 201 technical report: ISO 14187:2011—Surface chemical analysis—Characterization of nanomaterials. Surf. Interface Anal. 44, 1305 (2012).CrossRefGoogle Scholar
Inerbaev, T.M., Karakoti, A.S., Kuchibhatla, S.V.N.T., Kumar, A., Masunov, A.E., and Seal, S.: Aqueous medium induced optical transitions in cerium oxide nanoparticles. Phys. Chem. Chem. Phys. 17, 6217 (2015).CrossRefGoogle ScholarPubMed
Karakoti, A.S., Kuchibhatla, S.V.N.T., Babu, K.S., and Seal, S.: Direct synthesis of nanoceria in aqueous polyhydroxyl solutions. J. Phys. Chem. C 111, 17232 (2007).CrossRefGoogle Scholar
Karakoti, A.S., Singh, S., Kumar, A., Malinska, M., Kuchibhatla, S.V.N.T., Wozniak, K., Self, W.T., and Seal, S.: PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 131, 14144 (2009).CrossRefGoogle ScholarPubMed
Kuchibhatla, S., Karakoti, A.S., and Seal, S.: Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures—A true template-free self-assembly. Nanotechnology 18, 075303 (2007).CrossRefGoogle ScholarPubMed
Patil, S., Seal, S., Guo, Y., Schulte, A., and Norwood, J.: Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles. Appl. Phys. Lett. 88, 243110 (2006).CrossRefGoogle Scholar
Scholes, F.H., Hughes, A.E., Hardin, S.G., Lynch, P., and Miller, P.R.: Influence of hydrogen peroxide in the preparation of nanocrystalline ceria. Chem. Mater. 19, 2321 (2007).CrossRefGoogle Scholar
Tarnuzzer, R.W., Colon, J., Patil, S., and Seal, S.: Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 5, 2573 (2005).CrossRefGoogle ScholarPubMed
Tsunekawa, S., Fukuda, T., and Kasuya, A.: Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles. J. Appl. Phys. 87, 1318 (2000).CrossRefGoogle Scholar
Tsunekawa, S., Sivamohan, R., Ohsuna, T., Kasuya, A., Takahashi, H., and Tohji, K.: Ultraviolet absorption spectra of CeO2 nano-particles. Mater. Sci. Forum 315–317, 439 (1999).CrossRefGoogle Scholar
Zhang, H.Z., Gilbert, B., Huang, F., and Banfield, J.F.: Water-driven structure transformation in nanoparticles at room temperature. Nature 424, 1025 (2003).CrossRefGoogle ScholarPubMed
Gao, Y. and Peng, X.: Crystal structure control of CdSe nanocrystals in growth and nucleation: Dominating effects of surface versus interior structure. J. Am. Chem. Soc. 136, 6724 (2014).CrossRefGoogle ScholarPubMed
Fan, Z., Huang, X., Han, Y., Bosman, M., Wang, Q., Zhu, Y., Liu, Q., Li, B., Zeng, Z., Wu, J., Shi, W., Li, S., Gan, C.L., and Zhang, H.: Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 6, 6571 (2015).CrossRefGoogle ScholarPubMed