Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T00:48:07.276Z Has data issue: false hasContentIssue false

The amorphous to crystalline transition of ultrathin (Al,Mg)-oxide films grown by thermal oxidation of AlMg alloys: A high-resolution transmission electron microscopy investigation

Published online by Cambridge University Press:  31 January 2011

Eric J. Mittemeijer
Affiliation:
Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
Get access

Abstract

The microstructural evolution of ultrathin (<3 nm) oxide films grown on bare Al-based AlMg alloy substrates, by thermal oxidation in the temperature range of 300 to 610 K and at partial oxygen pressures in the range 10−4–10−2 Pa, was investigated by high-resolution transmission electron microscopy. Angle-resolved x-ray photoelectron spectroscopy was applied to establish the chemical constitution of the analyzed oxide films (i.e., the overall Al/Mg cationic ratio, as well as the relative depth distributions of Al and Mg in the grown oxide films). The ˜0.8-nm-thick (Al,Mg)-oxide film grown at 300 K is fully amorphous. A gradual development of long-range order in the oxide film sets in for thickening (Al,Mg)-oxide films of relatively high Mg content at T ≥ 475 K. The amorphous-to-crystalline transition proceeds by a phase separation: still predominantly amorphous oxide regions exist next to crystallized oxide regions, which are constituted of an MgO-type of oxide phase with a face-centered-cubic oxygen sublattice and an average lattice parameter of 4.146 ± 0.1 Å.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nolte, P., Stierle, A., Jin-Phillipp, N.Y., Kasper, N., Schulli, T.U., Dosch, H.Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 321, 1654 (2008)CrossRefGoogle ScholarPubMed
2.Lyapin, A., Jeurgens, L.P.H., Graat, P.C.J., Mittemeijer, E.J.The initial, thermal oxidation of zirconium at room temperature. J. Appl. Phys. 96, 7126 (2004)CrossRefGoogle Scholar
3.Jeurgens, L.P.H., Vinodh, M.S., Mittemeijer, E.J.Initial oxide-film growth on Mg-based MgAl alloys at room temperature. Acta Mater. 56, 4621 (2008)CrossRefGoogle Scholar
4.Pasquarello, A., Stoneham, A.M.Atomically controlled interfaces for future nanoelectronics. J. Phys. Condens. Matter 17, V1 (2005)CrossRefGoogle Scholar
5.Freund, H-J.Metal-supported ultrathin oxide film systems as designable catalysts and catalyst supports. Surf. Sci. 601, 1438 (2007)CrossRefGoogle Scholar
6.Koyama, M., Kamimuta, Y., Koike, M., Suzuki, M., Nishiyama, A.Effect of film composition of nitrogen incorporated hafnium aluminate (HfAlON) gate dielectric on structural transformation and electrical properties through high-temperature annealing. Jpn. J. Appl. Phys. 43, 1788 (2004)CrossRefGoogle Scholar
7.Dai, Z.R., Pan, Z.W., Wang, Z.L.Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9 (2003)CrossRefGoogle Scholar
8.Comini, E., Faglia, G., Sberveglieri, G., Pan, Z., Wang, Z.L.Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002)CrossRefGoogle Scholar
9.Gupta, A., Li, X.W., Xiao, G.Inverse magnetoresistance in chromium-dioxide-based magnetic tunnel junctions. Appl. Phys. Lett. 78, 1894 (2001)CrossRefGoogle Scholar
10.Jeurgens, L.P.H., Wang, Z.M., Mittemeijer, E.J.Thermodynamics of reactions and phase transformations at interfaces and surfaces. Int. J. Mater. Res. 100, 1281 (2009)CrossRefGoogle Scholar
11.Reichel, F., Jeurgens, L.P.H., Mittemeijer, E.J.The effect of substrate orientation on the kinetics of ultra-thin oxide-film growth on Al single crystals. Acta Mater. 56, 2897 (2008)CrossRefGoogle Scholar
12.Reichel, F., Jeurgens, L.P.H., Richter, G., Mittemeijer, E.J.Amorphous versus crystalline state for ultrathin Al2O3 overgrowths on Al substrates. J. Appl. Phys. 103, 093515 (2008)CrossRefGoogle Scholar
13.Reichel, F., Jeurgens, L.P.H., Richter, G., van Aken, P.A., Mittemeijer, E.J.The origin of high-mismatch orientation relationships for ultra-thin oxide overgrowths. Acta Mater. 55, 6027 (2007)CrossRefGoogle Scholar
14.Panda, E., Jeurgens, L.P.H., Mittemeijer, E.J.Interface thermodynamics of ultrathin, amorphous oxide overgrowths on AlMg alloys. Acta Mater. 58, 1770 (2010)CrossRefGoogle Scholar
15.Panda, E., Jeurgens, L.P.H., Mittemeijer, E.J.The initial oxidation of Al–Mg alloys: Depth-resolved quantitative analysis by angle-resolved XPS and real-time in-situ ellipsometry. J. Appl. Phys. 106, 114913 (2009)CrossRefGoogle Scholar
16.Brillas, E., Cabot, P.L., Centellas, F., Garrido, J.A., Perez, E., Rodriguez, R.M.Electrochemical oxidation of high-purity and homogeneous Al–Mg alloys with low Mg contents. Electrochim. Acta 43, 799 (1998)CrossRefGoogle Scholar
17.Kim, D.H., Yoon, E.P., Kim, J.S.Oxidation of an aluminum-0.4 wt% magnesium alloy. J. Mater. Sci. Lett. 15, 1429 (1996)CrossRefGoogle Scholar
18.Shimizu, K., Brown, G.M., Kobayashi, K., Skeldon, P., Thompson, G.E., Wood, G.C.The early stages of high temperature oxidation of an Al-0.5 wt% Mg alloy. Corros. Sci. 40, 557 (1998)CrossRefGoogle Scholar
19.Wakefield, G.R., Sharp, R.M.The composition of oxides formed on Al–Mg alloys. Appl. Surf. Sci. 51, 95 (1991)CrossRefGoogle Scholar
20.Esposto, F.J., Zhang, C.S., Norton, P.R., Timsit, R.S.Segregation of Mg to the surface of an Al–Mg single crystal alloy and its influence on the initial oxidation at room temperature. Surf. Sci. 302, 109 (1994)CrossRefGoogle Scholar
21.Bloch, J., Bottomley, D.J., Mihaychuk, J.G., van Driel, H.M., Timsit, R.S.Magnesium surface segregation and its effect on the oxidation rate of the (111) surface of A1-1.45at.%Mg. Surf. Sci. 322, 168 (1995)CrossRefGoogle Scholar
22.Panda, E., Jeurgens, L.P.H., Mittemeijer, E.J.Effect of in vacuo surface pre-treatment on the growth kinetics and chemical constitution of ultra-thin oxide films on Al–Mg alloy substrates. Surf. Sci. 604, 587 (2010)CrossRefGoogle Scholar
23.Snijders, P.C., Jeurgens, L.P.H., Sloof, W.G.Structural ordering of ultra-thin, amorphous aluminium-oxide films. Surf. Sci. 98, 589 (2005)Google Scholar
24.Reichel, F., Jeurgens, L.P.H., Mittemeijer, E.J.The thermodynamic stability of amorphous oxide overgrowths on metals. Acta Mater. 56, 659 (2008)CrossRefGoogle Scholar
25.Tchernychova, E., Scheu, C., Wagner, T., Fu, Q., Rühle, M.Electron microscopy studies of thin Mo films grown by MBE on (100) SrTiO3 substrates. Surf. Sci. 542, 33 (2003)CrossRefGoogle Scholar